

DSGN C4502: Structural Design and Analysis III

Language of Instruction: English Credits: 5 NFQ Level: 8 Module Delivered In 1 programme(s) Teaching & Learning Strategies: Lectures; Project work; Private study	Module Title:	Structural Design and Analysis III
NFQ Level: 8 Module Delivered In 1 programme(s) Teaching & Learning Lectures; Project work; Private study	Language of Instructio	n: English
Module Delivered In 1 programme(s) Teaching & Learning Lectures; Project work; Private study	Credits:	5
Teaching & Learning Lectures; Project work; Private study	NFQ Level:	8
	Module Delivered In	1 programme(s)
		Lectures; Project work; Private study
Module Aim: The aims of this module are: 1.) to develop the skills required to analyse the force distributions and deflections in 2-dimensional frame 3) to develop the skills to use computer programs for the analysis of beams and 2d structures. 4) to extend the learner's knowledge of the structural design of retaining walls, masonry and timber structures. 5) to have an understanding of the the long and short term implications of material section and construction type and method	Module Aim:	deflections in 2-dimensional frame 3) to develop the skills to use computer programs for the analysis of beams and 2d structures. 4) to extend the learner's knowledge of the structural design of retaining walls, masonry and timber structures. 5) to have an understanding of the the long and short term implications of

Learning O	Learning Outcomes					
On success	On successful completion of this module the learner should be able to:					
LO1	Analyse the shear force, bending moment and deflections of beams and 2d frames relevant to civil engineering using hand methods of calculations					
LO2	Analyse the shear force, bending moment and deflections of beams and 2d frames relevant to civil engineering using commercially available software programs for frame analysis					
LO3	Describe the physics of structure vibration and calculate vibration characteristics for simple structures.					
LO4	describe, design and calculate the embodied carbon of reinforced concrete retaining walls to the relevant National and European design standards.					
LO5	describe, design and calculate the embodied carbon of structural timber elements for broadly defined engineering problems to the relevant National and European design standards.					
LO6	describe, design and calculate the embodied carbon of load bearing masonry walls for broadly defined engineering problems to the relevant National and European design standards.					
LO7	To understand the implications of long and short term sustainability (construction and long term carbon footprint) when selecting a particular material and construction type and method, and the long term implications of construction maintenance					

Pre-requisite	learning
---------------	----------

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

Structural Analysis I

DSGN C4502: Structural Design and Analysis III

Module Content & Assessment

Indicative Content

Influence Coefficient Theorems

(a) Maxwells and Betti's theorems - Reciprocality of influence coefficients in elastic structures - proof (b) Muller-Breslau's principle - Proof of Theorem, Application to simple beam to produce influence lines, Application to continuous beams to produce influence lines

Analysis of continuous beams and 2d frames

(a) Differential settlement and thermal gradient effects (b) Beams, 2d sway and non sway frames analysed using i. Moment distribution ii. Virtual work iii. Stiffness method (slope deflection) (c) Qualitative analysis for deflection, shear force and bending moment.

Computer analysis for beams and 2d structures

(a) Analysis of deflections and forces for single span and continuous beams (b) Influence lines for continuous beams (c) Analysis of forces and deflections for 2d frames (d) Modelling of non prismatic members and curved members (e.g. arches)

Load Sharing Between Structural members

(a) Load sharing based on structure stiffness (b) Shear wall systems and load distribution

Arch Structures

(a) Analysis of statically indeterminate 3 pin arches. (b) Analysis of 2 pin statically indeterminate arches using strain energy (Castigliano) and virtual work approaches. Use of numerical methods of integration to resolve formulae thus derived.

Impact Loading

n/a

Theories of Failure

(a) Brief introduction to theories of failure

Structural Dynamics

(a) Free undamped vibration (b) Free damped vibration (c) Forced damped vibration (d) Damping methods in real structures (e) Vibration of simple structures – cantilever beam, simply supported beam, Rayleigh's Method for beams in flexure.

Plastic Theory for Structures

(a) Elastic-plastic stress-strain relation (b) Plastic bending without an axial force (c) Effect of axial load on plastic moment (d) Collapse loads and collapse mechanisms: i. Mechanism condition; ii. equilibrium condition; iii. yield condition; iv. Fundamental theorems of plastic collapse - Uniqueness theorem, Upper bound theorem, Lower bound theorem; v. Work method and statical method; vi. Incremental collapse and shakedown (e) Plastic methods applied to continuous beams (f) Plastic methods applied to single bay portal frames (g) Plastic methods applied to multibay portal frames (h) Yield Line Analysis for Reinforced concrete slabs: i. Slab simply supported 4 sides; ii. Slab simply supported 3 sides, free on side 4; iii. Slab simply supported 2 sides, encastre 2 sides; iv. Slab encastre 4 sides; v. Slab encastre 3 sides, free on side 4

Stiffness Methods

(a) Matrix Stiffness Method (b) General stiffness method

Design of Reinforced Concrete Retaining Walls

(a) Types of retaining walls (b) Design of cantilever retaining wall (c) Calculate the embodied carbon

Design of structural timber

(a) Strength classes (b) Types of timber structures (c) Permissible span tables (d) Load duration and load sharing (e) Flexural strength (f) Deflection (g) Design for axial compression members. (h) Calculate the embodied carbon

Masonry Walls

(a) Bricks, blocks and mortars (b) Characteristic and design strengths (c) Design of a vertically loaded masonry wall (d) Design of a laterally loaded masonry wall (e) calculate the embodied carbon

Assessment Breakdown	%
Continuous Assessment	20.00%
Project	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment						
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date		
Examination	n/a	1,2,3	20.00	Ongoing		

Project					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Project	Design Projects	4,5,6	20.00	n/a	

No Practical

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	No Description	1,3,4,5,6,7	60.00	End-of-Semester	

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

DSGN C4502: Structural Design and Analysis III

Module Workload

Workload: Full Time				
Workload Type	Frequency	Average Weekly Learner Workload		
Lecture	12 Weeks per Stage	6.00		
Estimated Learner Hours	12 Weeks per Stage	6.00		
	Total Hours	144.00		

Module Delivered In

Р	rogramme Code	Programme	Semester	Delivery
С	W_CMHCE_B	Bachelor of Engineering (Honours) in Civil Engineering	8	Mandatory