

DSGN H4601: Advanced Simulation

Module Title:		Advanced Simulation	
Language of Instruction:		English	
Credits:	5		
NFQ Level: 8			
Module Delivered In		1 programme(s)	
Teaching & Learning Strategies:		The module will be delivered using lectures and tutorials with a mixture of presentations, example exercises, question and answer sessions, group discussions and online resources. Laboratory classes will be delivered to students working in groups to obtain experimental data with subsequent individual reporting/assessment.	
Module Aim:		The aim of this module is to provide students with an in-depth understanding and best practice of advanced design processes including CFD & FEA and the application of computer technologies to these areas.	
Learning Outcomes			

Learning Outcomes			
On successful completion of this module the learner should be able to:			
LO1	Develop mesh generation strategy for two and three dimensional geometrical arrangements using industry standard software		
LO2	Apply advanced F.E.A. & C.F.D. techniques to typical design problems;		
LO3	Perform parameter based DOE and design optimisation		
LO4	Write technical reports in the style of a journal paper		

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

DSGN H3601 Advanced Manufacturing or equivalent

DSGN H4601: Advanced Simulation

Module Content & Assessment

Indicative Content

• ANSYŠ Meshing Basics • Meshing Methods • Global Mesh Controls • Local Mesh Control • Assembly Meshing • Mesh Quality

Finite Element Analysis

General Pre-processing, Modelling Connections, Remote Boundary Conditions and Constraint Equations, Static Structural Analysis, Modal Analysis, Thermal Analysis, Multistep Analysis, Results and Post-Processing,

Introduction to Computational Fluid Dynamics

Introduction to the CFD Methodology • Cell Zone and Boundary Conditions • Post-Processing with Fluent and CFD-Post • Solver Settings • Turbulence Modelling • Heat Transfer • Transient Flows • Moving Zones • Multiphase Flows • HPC • Best Practices

Heat Transfer Modelling
• Introduction • Conduction Heat Transfer • Forced Convection • Natural Convection • Radiation Heat Transfer • Solar Load Model • Heat Exchangers • Heat Transfer in Porous Media • Best Practices

Mechanical Nonlinear Connections and Contact

• Interface Treatments • Bolt Pretension • Modeling Gaskets • Accessing Advanced Contact Features via MAPDL • General Contact Technology • Best Practices

Mechanical Dynamics

· General understanding of the different types of dynamic analyses. • Procedure for performing FEA simulations, including modal, harmonic, random vibration, response spectrum, and transient structural analyses • Best Practices

CFD Dynamic Meshing• Dynamic Mesh Zones with UDF's and Profiles • Layering Mesh Method • Smoothing Mesh Method • Remeshing • Coupled 6DOF • Convergence • Best Practices

Assessment Breakdown	%	
Continuous Assessment	50.00%	
Project	50.00%	

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Students will be required complete on site lab tasks	1,2,3	50.00	Ongoing

Project				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	Students will complete projects investigating design issues using CAD/FEA & CFD packages	1,2,3,4	50.00	n/a

No Practical		
I 140 I Tablicai		

No End of Module Formal Examination

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

DSGN H4601: Advanced Simulation

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lab/Lecture	12 Weeks per Stage	1.00
Laboratory	12 Weeks per Stage	3.00
Estimated Learner Hours	15 Weeks per Stage	5.13
	Total Hours	125.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EMMEC_B	Bachelor of Engineering (Honours) in Mechanical Engineering	7	Mandatory