

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No Co-requisite modules listed

No requirements listed

MATH C2503: Engineering Mathematics II

University					
Module Title:		Engineering Mathematics II			
Language of Instruction:		English			
Credits: 5					
NFQ Level:	7				
Module Deliv	ered In	2 programme(s)			
Teaching & L Strategies:	earning	Lectures, private study.			
Module Aim:		The aim of the module is to develop students' proficiency in calculus as a basis for further study in civil engineering.			
Learning Out	tcomes				
On successful	l completion of th	nis module the learner should be	able to:		
LO1	Use various me	thods to find the roots of equatio	ns.		
LO2	Apply differentia	ll and integral calculus and partia	al differential calculus to a variety of engineering applications.		
LO3 Apply techniques to approximate definite integrals.			ls.		
LO4 Solve simple first and second order differential equations.					
Pre-requisite	learning				
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module.					
9890 MATH C1503		03 N	Mathematics and Statistics I		
Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module.					
No incompatible modules listed					
Co-requisite Modules					

MATH C2503: Engineering Mathematics II

Module Content & Assessment

Indicative Content

(a) Factor theorem and remainder theorem. (b) Factorising cubic equations. (c) The discriminant and roots of quadratic equations. (d) Interpolation including Newton-Raphson method.

(a) Review of differentiation using product, quotient and chain rule. (b) Review of integration by parts, substitution and partial fractions. Applications to engineering problems including centroids. (c) Partial differentiation and application to small changes.

Approximating integrals

(a) Taylor polynomials. (b) Trapezoidal rule. (c) Simpson's rule.

Introduction to ordinary differential equations
(a) General solutions and particular solutions. (b) First order separable ODEs. (c) First order linear ODEs. (d) Second order linear ODEs with constant coefficients.

Assessment Breakdown	%
Continuous Assessment	50.00%
End of Module Formal Examination	50.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Short Answer Questions	Quiz questions	1,2,3,4	20.00	Ongoing
Examination	Class Test 1	1,2	15.00	Week 6
Examination	Class Test 2	3,4	15.00	Week 11

No Project	

No Practical

End of Module Formal Exam	ination			
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	End of module examination	1,2,3,4	50.00	End-of-Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

MATH C2503: Engineering Mathematics II

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	4.00
Estimated Learner Hours	15 Weeks per Stage	6.00
	Total Hours	138.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_CMHCE_B	Bachelor of Engineering (Honours) in Civil Engineering	4	Mandatory
CW_CMCIV_D	Bachelor of Engineering in Civil Engineering	6	Mandatory