

SYST C4602: Digital Systems

Module Title:		Digital Systems
Language of Instructio	n:	English
Credits:	10	
NFQ Level:	8	
Module Delivered In		2 programme(s)
Teaching & Learning Strategies:		A combination of lectures, class discussion, tutorial, laboratory exercises and demonstrations will be used. Emphasis will be placed on active learning including problem / project bases learning.
Module Aim:		To provide learners with the knowledge and skills needed to design, simulate, synthesise and validate digital systems using SOC technology.
Learning Outcomes		
On successful completic	n of th	his module the learner should be able to:
LO4 Described		

LO1	Describe System on Chip (SoC) architectures and interfaces.
LO2	Use contemporary Electronic Design Automation (EDA) tools to develop digital systems using field programmable SOC devices.
LO3	Use a HDL to create a self-checking test bench to test a digital system which incorporates combinational and sequential logic.
LO4	To use a SOC bus technology to interconnect system components.
LO5	Design and implement a small system incorporating a datapath and datapath controller.
LO6	Analyze systems specifications in order to plan, partition, design, implement and test a digital system.

Pre-requisite learning
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module.
No recommendations listed
<i>Incompatible Modules</i> These are modules which have learning outcomes that are too similar to the learning outcomes of this module.
No incompatible modules listed
Co-requisite Modules
No Co-requisite modules listed
Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.
Hardware Description Language or equivalent

SYST C4602: Digital Systems

Module Content & Assessment

Indicative Content

Datapaths:

Use a HDL to synthesize/simulate datapath elements (adders, multipliers, shift registers, ALU etc.), zero/sign extension, carry/overflow, casting (sign, size). Incorporating a pipeline (latency, throughput). Datapath controller – review of state machines. Development of a subsystem consisting of a datapath & datapath controller (eg. Shift and add multiplier, RPN calculator etc.)

Memory:

FPGA memory resources (embedded memory & distributed logic cells). Use a HDL to synthesis/simulate RAM based components (single/dual port synchronous RAM, register file, Stack, FIFO). Use a HDL to synthesize/simulate systems that incorporate ROM (lookuptable, linearization, waveform generator). Memory initialization file.

Clock:

Clock generation (PLL), management and distribution. Clock trees, clock skew, clock regions, power optimization. Clock enable & clock_division (used for synchronous clocking at very low frequency).

System design: Getting from a specification to system. Partitioning the system - block diagram, dataflow diagram, timing diagrams. Hardware/software codesign.

CPU:

Overview of options for CPU - Softcore: (Microblaze, Nios, Cortex-M1, Risc-V). Hardcore (Cortex A series, Risc-V). Developing code for the embedded CPU of a selected SOC. Operating system (PetaLinux or UcLinux?).

Buses:

Overview of SOC bus technologies (AMBA, AXI, CoreConnect, Wishbone). Use a chosen bus to interconnect system components (IP). Handshake, decoding, arbitration, clocking.

Testbench:

Creating a self checking test bench. Layered testbench, scoreboarding, assertions, classes, constrained random variables.

Systems issues:

Project - Development of a system that utilizes a CPU, Buses, IP and OS. Investigate the implications of design approach/partitioning on power, speed, timing and area. Static timing analysis.

Misc:

Automation of the build process using a script language such as Tcl/Tk.

Assessment Breakdown	%
Continuous Assessment	20.00%
Project	30.00%
End of Module Formal Examination	50.00%

Continuous Assessment

Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	n/a	1,2,3	20.00	n/a

Project

Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	n/a	2,3,4,5,6	30.00	n/a

No Practical

End of Module Formal Examin	ation			
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	n/a	1,2,3,5	50.00	End-of-Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

SYST C4602: Digital Systems

Module Workload Workload: Full Time Average Weekly Learner Workload Workload Type Frequency Every Week 4.00 Lecture Every Week Laboratories 3.00 Every Week Independent Learning 5.00 Total Hours 12.00

Module Delivered In			
Programme Code	Programme	Semester	Delivery
CW_EEBEE_B	Bachelor of Engineering (Honours) in Biomedical Electronics	8	Mandatory
CW_EESYS_B	Bachelor of Engineering (Honours) in Electronic Engineering	8	Mandatory