

AGRI C3F02: Agricultural Design, Simulation and Analysis

NFQ Level: 7 Module Delivered In 2 programme(s) Teaching & Learning Strategies: Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design and machinery. Learning Outcomes The aim of this module is to provide students with an in-depth knowledge of the material / components and machinery. Consuccessful completion of this module the learner should be able to: Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. LO2 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. LO3 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. LO4 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior lea					
Credits: 10 NFQ Level: 7 Module Delivered In 2 programme(s) Teaching & Learning Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery. Learning Outcomes The aim of this module the learner should be able to: On successful completion of this module is to provide structures to agricultural applications. Component when subjected to loads with particular emphasis on agricultural applications. L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering design problems. L06	Module Title:		Agricultural Design, Simulation and Analysis		
NFQ Level: 7 Module Delivered In 2 programme(s) Teaching & Learning Strategies: Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery. Learning Outcomes Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and software. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering desig	Language of Ins	struction:	English		
Module Delivered In 2 programme(s) Teaching & Learning Strategies: Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery. Learning Outcomes The aim of this module the learner should be able to: On successful completion of this module the learner should be able to: Component when subjected to loads with particular emphasis on agricultural applications. L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural systems. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering design problems. L06 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module	Credits:	10			
Teaching & Learning Strategies: Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery. Learning Outcomes Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Apply models of F.E.A. to typical agricultural engineering design problems. L05 Application of F.E.A. to typical agricultural engineering design problems. L06 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skil	NFQ Level:	7			
Strategies: student has a wide range of experiences. Module Aim: The aim of this module is to provide students with an in-depth knowledge of the design process and design and machinery. Learning Outcomes The aim of this module is to provide students with an in-depth knowledge of the design process and design and machinery. Learning Outcomes Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering design problems. L05 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning (or a practical skill) that is recommended before enrolment in this module. No recommentations modules listed <td>Module Deliver</td> <td>ed In</td> <td>2 programme(s)</td>	Module Deliver	ed In	2 programme(s)		
evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery. Learning Outcomes On successful completion of this module the learner should be able to: L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering design problems. L06 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Modules Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations Integration of this modules listed Incompatible Modules These are modules listed No co-requisite modules listed Requirements No co-requisite modules listed Requise modules listed		arning			
On successful completion of this module the learner should be able to: L01 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. L02 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. L03 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. L04 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. L05 Application of F.E.A. to typical agricultural engineering design problems. L06 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No incompatible Modules These are modules listed Co-requisite modules listed No co-requisite modules listed Requirements No co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	Module Aim:		evolution of components as well as failure criteria and stress / strain analysis for agricultural components		
LO1 Describe the stress at a point within a material / component, predicting the behaviour and/or failure of the material / component when subjected to loads with particular emphasis on agricultural applications. LO2 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. LO3 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. LO4 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No incompatible Modules These are modules listed Co-requisite modules listed Modules No co-requisite modules listed Requirements No Co-requisite modules listed Modules Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	Learning Outco	omes			
component when subjected to loads with particular emphasis on agricultural applications. LO2 Apply models of stress / strain to representative agricultural systems in order to determine relationships between loads and the corresponding deflection. LO3 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. LO4 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. The requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules listed Co-requisite modules listed Requirements No Co-requisite modules listed Requirements The series are modules listed Requirements The series of a practical skill) that is mandatory before enrolment in this module is allowed.	On successful co	ompletion of	this module the learner should be able to:		
the corresponding deflection. Intersection of the corresponding deflection. LO3 Develop finite element models of simple agricultural structures to solve for load, deflection and stress. LO4 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules listed No incompatible modules listed No Co-requisite modules listed No Co-requisite modules listed Requirements Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.					
LO4 Develop mesh generation strategies for two and three-dimensional geometrical arrangements using industry standard software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite modules listed No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.					
software. Software. LO5 Application of F.E.A. to typical agricultural engineering design problems. LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	LO3 De	evelop finite	element models of simple agricultural structures to solve for load, deflection and stress.		
LO6 Quantify, by calculation and experimental measurement, the characteristic response of an agricultural system. Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.			generation strategies for two and three-dimensional geometrical arrangements using industry standard		
Pre-requisite learning Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	LO5 Ap	oplication of	F.E.A. to typical agricultural engineering design problems.		
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	LO6 Qu	uantify, by ca	alculation and experimental measurement, the characteristic response of an agricultural system.		
This is prior learning (or a practical skill) that is recommended before enrolment in this module. No recommendations listed Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	Pre-requisite le	arning			
Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.					
These are modules which have learning outcomes that are too similar to the learning outcomes of this module. No incompatible modules listed Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	No recommenda	ations listed			
Co-requisite Modules No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.			ve learning outcomes that are too similar to the learning outcomes of this module.		
No Co-requisite modules listed Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	No incompatible modules listed				
Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	Co-requisite Mo	odules			
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.	No Co-requisite	modules list	ed		
CAD 1 or equivalent		ning (or a pr	actical skill) that is mandatory before enrolment in this module is allowed.		
	CAD 1 or equiva	lent			

AGRI C3F02: Agricultural Design, Simulation and Analysis

Module Content & Assessment

Indicative Content

Stress strain relations

Plane stress.
 Mohr's stress circle.
 Three-dimensional stress

Failure Criteria

· Rankine, Tresca & von Mises Failure criteria. • Stress concentrations.

Slope and Deflection of Beams • Integration method. • Macaulay functions.

Finite Element Method

• Introduction to stiffness matrices. • Finite elements. • Co-ordinates systems. • Types of elements. • Manual analysis of simple structures.

Meshing

ANSYS Meshing Basics
 Meshing Methods
 Global Mesh Controls
 Local Mesh Control
 Assembly Meshing
 Mesh Quality

Finite Element Analysis

 General Pre-processing. • Modelling Connections. • Remote Boundary Conditions and Constraint Equations. • Static Structural Analysis. •
 Modal Analysis. • Thermal Analysis. • Multistep Analysis. • Results and Post-Processing. Mechanical Nonlinear Connections and Contact • Interface Treatments • Bolt Pretension • Modeling Gaskets • Accessing Advanced Contact Features via MAPDL • General Contact Technology • Best Practices

Shear and Torsion

Modulus of elasticity. • Application to compound sections. • Shear stress and shear strain. • Modulus of Rigidity. • Torsion in solid and hollow shafts: Relationship betweentorque, shear stress, polar second moment of area, angle of twist. • Drive shaft configurations, cardinal shafts, balancing effect and coupling arrangements. • Power Transmission.

Assessment Breakdown	%
Continuous Assessment	25.00%
Project	30.00%
Practical	45.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Class test	1,2,3	25.00	Week 12

Project				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	Students will complete projects investigating design issues and redesign solutions using CAD / FEA.	4,5,6	30.00	Sem 1 End

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Laboratory Experiments utilising engineering labs and FEA software.	3,4,5,6	45.00	Every Week
r				

No End of Module Formal Examination

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

AGRI C3F02: Agricultural Design, Simulation and Analysis

Module Workload

Workload: Full Time			
Workload Type	Frequency	Average Weekly Learner Workload	
Lecture	12 Weeks per Stage	2.00	
Laboratory	12 Weeks per Stage	3.00	
Lab/Lecture	12 Weeks per Stage	1.00	
Independent Learning	15 Weeks per Stage	11.07	
	Total Hours	238.00	

Module Delivered In			
Programme Code	Programme	Semester	Delivery
CW_EFARG_B	Bachelor of Engineering (Honours) in Agricultural Systems Engineering	5	Mandatory
CW_EFARG_D	Bachelor of Engineering in Agricultural Systems Engineering	5	Mandatory