

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No Co-requisite modules listed

No requirements listed

SYST H3602: Propulsion Systems 2

University				
Module Title:		Propulsion Systems 2		
Language of Instruction:		English		
Credits:	10			
NFQ Level:	7			
Module Deli	vered In	1 programme(s)		
Teaching & Learning Strategies:		The module will be taught with lectures and laboratory exercises and will be supported by on-line media the are available on the college VLE.		
Module Aim:		The aim of this module is to provide the student with the knowledge required to analyse the performance of a diverse range of propulsion systems in the aerospace domain.		
Learning Ou	ıtcomes			
On successfu	ul completion o	f this module the learner should be able to:		
LO1	Perform calc	ulations relating to the peformance of air breathing aerospace propulsion systems.		
LO2	Calculate pe	formance of different stages of propulsion systems.		
LO3 Numerically evaluate performance of propellers		evaluate performance of propellers		
LO4	Categorise v	arious electric propulsion architectures		
Pre-requisit	e learning			
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module.				
No recommendations listed				
Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module.				
No incompat	No incompatible modules listed			
Co-requisite	Co-requisite Modules			

SYST H3602: Propulsion Systems 2

Module Content & Assessment

Indicative Content

Introduction to Thermodynamics

Review of conservation equations: mass, momentum and energy, thermodynamics, compressible flow, Introduction: air-breathing and rocket propulsion, first Law of thermodynamics, specific heat capacity, ratio of specific heat capacities, closed systems, open system, steady state energy equation, enthalpy.

Second Law of thermodynamics, entropy, T-S Diagrams.

Thermodynamic cycles

Otto Cycle, Diesel Cycle, Brayton Cycle, Mean effective pressure, cycle efficiency, PV diagrams.

Compressors

Centrifugal compressors, Axial compressor, work required, whirl speed, power.

CombustionStoicometric combustion, thermochemistry, fuels, premixed, non-premixed flames, adiabatic flame temperature, experimental and numerical methods in combustion, flammability and stability limits.

Turbines

Work, power, reaction.

Nozzles

Critical pressure, critical temperature, nozzle velocity.

Froude Momentum

Froude momentum theory, in-flow, thrust

Torsion of shafts.

2nd Polar Moment, Torque, Power, Shear, Moment of Inertia, Radius of Gyration.

Balancing of Rotating Masses

Static Balancing and Dynamic Balancing, both numerically and graphically.

Whirl speed, torsional vibration, Rayleigh method, Dunkerley's method.

Electric Motor Propulsion Construction
Construction of rotating electric machines (outrunner, inrunner, rotor, stator, shaft, bearings, magnets, windings, electrical insulation, commutators, motor cooling, sensors).

Electric Motor Propulsion

Power electronics (switching devices, DC-DC converters, single-phase and multiple-phase DC-AC inverters, single-phase and multiplephase AC-DC rectifiers). Motor control systems (control functions, speed control, torque control, position measurement, generator mode for energy recuperation, protection functions). Wiring of electric power storage, power electronics and electric motor. High energy and voltages risks, and associated safety procedures.

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Written Report	Students will complete a written report where they will be required to perform some calculations.	1,2,3,4	10.00	Week 4
Examination	A class test which may be administered on the college VLE.	1,2	10.00	Week 4

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	A series of practical tasks relating to the performance of a propulsion system.	1,2	10.00	Every Week
Practical/Skills Evaluation	Will consist of a practical test in which students will be required to write software to analyse a propulsion system.	1,2,3	10.00	Week 12

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	A formal written exam where students will be required to peform calculations relating to propulsion sytems.	1,2,3,4	60.00	End-of- Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

SYST H3602: Propulsion Systems 2

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	5.00
Practicals	12 Weeks per Stage	4.00
Independent Learning	15 Weeks per Stage	9.47
	Total Hours	250.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEACS_D	Bachelor of Engineering in Aircraft Systems	5	Mandatory