

COAP H4601: Aerodynamics and Computational Analysis

		4XI	University	
Module Title:			Aerodynamics and Computational Analysis	
Language of Instruction:		1:	English	
Credits:		10		
NFQ Level:		8		
Module Deli	vered In		1 programme(s)	
Teaching & Learning Strategies:			Teaching will be a blend of lectures and laboratories	
Module Aim:			To provide the students with a comprehensive understanding of compressible, incompressible, inviscid and viscous flow, and the skills and techniques required to perform analyse fluid dynamics processes using an industry standard CFD package.	
Learning Ou	ıtcomes			
On successfi	ul completior	n of th	nis module the learner should be able to:	
LO1 Apply aerodynamic principles including ph		dynar	mic principles including physical quantities of a flowing gas	
LO2	Examine various aerodynamic theorems		s aerodynamic theorems	
LO3	Perform calculations for both inviscid and viscous flow		tions for both inviscid and viscous flow	
LO4	Calculate lift/drag/moment coefficients in terms of airfoils, wings and other aerodynamic shapes			
LO5	Analyse Computational Fluid Dynamics (CFD) processes using industry standard software			
LO6	Prepare CAD models to perform meshing processes for CFD analysis			
Pre-requisit	e learning			
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module.				

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

COAP H4601: Aerodynamics and Computational Analysis

Module Content & Assessment

Indicative Content

Physical quantities of a flowing gas; Source of all aerodynamic forces; Equation of state for a perfect gas

Hydrostatic equation; Geometric and geopotential altitudes; Standard atmosphere definition; Pressure, temperature and density altitudes

Continuity and momentum equations; Thermodynamics; Isentropic flow; Energy equations; Subsonic wind tunnels Airspeed measurement; Viscous flow; Reynolds number; Laminar and turbulent boundary layers; Transition; Flow separation; Viscous effects on drag

Aerofoils, wings and wind turbines

Airfoil nomenclature; Lift, Drag and Moment coefficients; Airfoil data (NACA); Infinite versus finite wings; Pressure coefficient; Obtaining lift coefficient from Cp; Compressibility correction for Lift Coefficient; Critical Mach number and Critical Pressure Coefficient; Airfoil drag; Calculation of induced drag; Change in the lift slope; Swept wings; Wind Turbine Aerodynamics

Introduction to Computational Fluid Dynamics

Introduction to the CFD Methodology · Cell Zone and Boundary Conditions · Post-Processing with CFD-Post · Solver Settings · Turbulence Modelling · Heat Transfer · Transient Flows · Moving Zones · Multiphase Flows · HPC · Best Practices

CFD Dynamic Meshing

• Dynamic Mesh Zones with UDF's and Profiles • Layering Mesh Method • Smoothing Mesh Method • Remeshing • Coupled 6DOF • Convergence • Best Practices

Assessment Breakdown	%
Continuous Assessment	60.00%
End of Module Formal Examination	40.00%

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Examination	Students will sit a mid-term class test in Aerodynamics	1,2,3,4	10.00	n/a	
Practical/Skills Evaluation	Students will sit at least 1 test in CFD	1,5,6	20.00	n/a	
Practical/Skills Evaluation	Completion of subsonic aerodynamic experiments to demonstrate the principles of lift, drag and moment coefficients using a wind tunnel or suitable simulation software	1,2,3,4	10.00	n/a	
Project	Students will complete a project investigating fluid flow around an object using a CFD packages	4,5,6	20.00	n/a	

I No Project		
I No Project		

No Practical

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	n/a	1,2,3,4	40.00	End-of-Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

COAP H4601: Aerodynamics and Computational Analysis

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	4.00
Laboratory	12 Weeks per Stage	4.00
Independent Learning Time	15 Weeks per Stage	10.27
	Total Hours	250.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEAER_B	Bachelor of Engineering (Honours) in Aerospace Engineering	7	Mandatory