

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No Co-requisite modules listed

No requirements listed

ZCHE C3103: Physical Chemistry

University				
Module Title:		Physical Chemistry		
Language of Instruction:		English		
Credits:	5			
NFQ Level:	7			
Module Delivered In		2 programme(s)		
Teaching & Learning Strategies:		To understand the importance of quantification and measurement in physicochemical process. To develop working models or rigs for efficient analyte extraction. To understand the importance of the use of instrumentation in industrial process.		
Module Aim:		To provide a basic knowledge of the measurement technques which underline chemical analysis and process. To use electrochemical and surface chemical methods to synthesize, extract and to electrodeposit. To investigate the mechnaisms of chemical reaction.		
Learning Outcomes				
On successful completic	n of th	nis module the learner should be able to:		
LO1 Explore th	LO1 Explore the use of common laboratory instrumentation in controlling physicochemical process.			
LO2 Develop methods for the efficient production and monitoring of electrolyte in electrochemical pro		ds for the efficient production and monitoring of electrolyte in electrochemical process.		
LO3 Describe t	Describe the importance of efficiency and yield in processes.			
Pre-requisite learning				
Module Recommendat This is prior learning (or		ctical skill) that is recommended before enrolment in this module.		
No recommendations listed				
Incompatible Modules These are modules which	h hav	e learning outcomes that are too similar to the learning outcomes of this module.		
No incompatible modules listed				
Co-requisite Modules				

ZCHE C3103: Physical Chemistry

Module Content & Assessment

Indicative Content

Websites and e-books will be used as much as formal printed material

Thermodynamics

Second, third laws of thermodynamics. Reversible and irreversible systems. Heats of reaction, entropy. Electrical potential

Surface & Colloid Chemistry
The dispersed state. Surface tension. Surfactants and emulsions. Viscosity and rheology. Adsorption. Catalysis.

Electrochemistry, ElectrolytesFuel cells and emf. Debye-Huckel equation. Transport properties of electrolytes. Oxidation and reduction. Electrochemical deposition. Non-aqueous solvents and ionic liquids.

1st-, 2nd and 3rd - order processes. Law of mass action. Arrhenius equation. Yields in chemical process. Solubility product.

Phase behaviour

Phase rule. Henry's Law. Binary and ternary phase diagrams. Melting and eutectic point determination. Melting behaviour of polymers. Alloy formation

Assessment Breakdown	%
Continuous Assessment	10.00%
Practical	30.00%
End of Module Formal Examination	60.00%

Special Regulation

Students must achieve a minimum grade (35%) in both practical/CA and final exam.

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Thermodynamics. Heats of reaction, entropy. Surface & Colloid Chemistry Viscosity and rheology. Electrochemistry, Kinetics Phase behaviour	1,2,3	10.00	n/a

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Viscosity of fluids and gels. Kinetic pathways of common reactions. Electrochemical processes. Surface chemical methods and emulsions. Solutions and conductivity. Optical properties.	1,2,3	30.00	n/a

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	Thermodynamics. Heats of reaction, entropy. Surface & Colloid Chemistry Viscosity and rheology. Electrochemistry, Kinetics Phase behaviour	1,2,3	60.00	End-of- Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

ZCHE C3103: Physical Chemistry

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	2.00
Laboratory	12 Weeks per Stage	3.00
Independent Learning Time	15 Weeks per Stage	4.33
	Total Hours	125.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_SAPHA_B	Bachelor of Science (Honours) in Pharmaceutics and Drug Formulation	5	Mandatory
CW_SAASC_D	Bachelor of Science in Analytical Science	5	Mandatory