

ANAL H5501: Structural Analysis II

Module Title:		Structural Analysis II
Language of Instruction:		English
Credits:	5	
NFQ Level:	8	
Module Delivered In		2 programme(s)
Teaching & Learning Strategies:		Lectures; Project work; Private study
Module Aim:		The aims of this module are: 1.) to develop the skills required to analyse the force distributions and deflections in 2 dimensional frames; 2.) to develop an understanding of the plastic theory of structures in relation to beams, 2d frames and reinforced concrete slabs; 3) to develop an understanding relevant to civil engineering structures of the structural dynamics of beams; 4) to develop the skills to use computer programs for the analysis of beams and 2d structures.
Learning Outcomes On successful completic	on of th	his module the learner should be able to:

Learning Outcomes					
On successful completion of this module the learner should be able to:					
LO1	Analyse the shear force, bending moment and deflections of beams and 2d frames relevant to civil engineering using hand methods of calculations				
LO2	Analyse the shear force, bending moment and deflections of beams and 2d frames relevant to civil engineering using commercially available software programs for frame analysis				
LO3	Calculate the failure load of standard reinforced concrete slabs using the yield line method of analysis.				
LO4	Apply the theorems of plastic collapse in calculating the failure load of continuous beams and simple portal frames				
LO5	Describe the physics of structure vibration and calculate vibration characteristics for simple structures.				
LO6	Qualitatively analyse continuous beam and 2d structures for deflection, shear and bending moment				

Pre-requisite learning

Module RecommendationsThis is prior learning (or a practical skill) that is recommended before enrolment in this module.

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

Structural Analysis I

ANAL H5501: Structural Analysis II

Module Content & Assessment

Indicative Content

Influence Coefficient Theorems

(a) Maxwells and Betti's theorems - Reciprocality of influence coefficients in elastic structures - proof (b) Muller-Breslau's principle - Proof of Theorem, Application to simple beam to produce influence lines, Application to continuous beams to produce influence lines

Analysis of continuous beams and 2d frames

(a) Differential settlement and thermal gradient effects (b) Beams, 2d sway and non sway frames analysed using i. Moment distribution ii. Virtual work iii. Stiffness method (slope deflection) (c) Qualitative analysis for deflection, shear force and bending moment.

Computer analysis for beams and 2d structures

(a) Analysis of deflections and forces for single span and continuous beams (b) Influence lines for continuous beams (c) Analysis of forces and deflections for 2d frames (d) Modelling of non prismatic members and curved members (e.g. arches)

Load Sharing Between Structural members

(a) Load sharing based on structure stiffness (b) Shear wall systems and load distribution

Arch Structures

(a) Analysis of statically indeterminate 3 pin arches. (b) Analysis of 2 pin statically indeterminate arches using strain energy (Castigliano) and virtual work approaches. Use of numerical methods of integration to resolve formulae thus derived.

Impact Loading

n/a

Theories of Failure

(a) Brief introduction to theories of failure

Structural Dynamics

(a) Free undamped vibration (b) Free damped vibration (c) Forced damped vibration (d) Damping methods in real structures (e) Vibration of simple structures – cantilever beam, simply supported beam, Rayleigh's Method for beams in flexure.

Plastic Theory for Structures

(a) Elastic-plastic stress-strain relation (b) Plastic bending without an axial force (c) Effect of axial load on plastic moment (d) Collapse loads and collapse mechanisms: i. Mechanism condition; ii. equilibrium condition; iii. yield condition; iv. Fundamental theorems of plastic collapse - Uniqueness theorem, Upper bound theorem, Lower bound theorem; v. Work method and statical method; vi. Incremental collapse and shakedown (e) Plastic methods applied to continuous beams (f) Plastic methods applied to single bay portal frames (g) Plastic methods applied to multibay portal frames (h) Yield Line Analysis for Reinforced concrete slabs: i. Slab simply supported 4 sides; ii. Slab simply supported 3 sides, free on side 4; iii. Slab simply supported 2 sides, encastre 2 sides; iv. Slab encastre 4 sides; v. Slab encastre 3 sides, free on side 4

Stiffness Methods

(a) Matrix Stiffness Method (b) General stiffness method

Assessment Breakdown	%
Continuous Assessment	20.00%
Project	15.00%
End of Module Formal Examination	65.00%

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Examination	Term 1 Exam	1,6	10.00	n/a	
Examination	Term 2 Exam	1,3,4,5,6	10.00	n/a	

Project					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Project	No Description	1,2	15.00	n/a	

No Practical

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	No Description	1,3,4,5,6	65.00	End-of-Semester	

ANAL H5501: Structural Analysis II

Module Workload

Workload: Full Time				
Workload Type	Frequency	Average Weekly Learner Workload		
Lecture	30 Weeks per Stage	3.00		
Estimated Learner Hours	30 Weeks per Stage	4.67		
	Total Hours	230.00		

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_CMHCE_B	Bachelor of Engineering (Honours) in Civil Engineering - Ab Initio	7	Mandatory
CW_CMCEN_B	Bachelor of Engineering (Honours) in Civil Engineering - Add On	3	Mandatory