

SYST H2602: Propulsion Systems 1

Module Title:			Propulsion Systems 1
Language of	f Instructior	n:	English
Credits:		5	
NEO Level		6	
IN & LOVOI.		0	
Module Deli	vered In		2 programme(s)
Teaching & Strategies:	Learning		This module will be taught by Lectures, Tutorials & Practical/Trouble-shooting tasks.
Module Aim	:		The student will understand the working principles of aircraft gas turbine, piston engines and propellers.
Learning Ou	itcomes		
On successf	ul completior	n of th	nis module the learner should be able to:
LO1	Explain the	e theo	retical fundamentals of the gas turbine and piston engines.
LO2	Describe th	ne pri	nciples of operation of an engines ancillary systems, eg oil and fuel.
LO3	Recognise	the fu	undamental principles of a propeller.
LO4	Classify the	e rela	tionship between an engine and an aircraft's on-board systems.
Pre-requisit	e learning		
Module Rec This is prior l	ommendatio earning (or a	ons a prac	ctical skill) that is recommended before enrolment in this module.
No recomme	ndations liste	ed	
Incompatible	e Modules odules which	h have	e learning outcomes that are too similar to the learning outcomes of this module.
No incompati	ible modules	s liste	d
Co-requisite	Modules		
No Co-requis	ite modules	listec	
Requiremen This is prior l	ts earning (or a	a prac	tical skill) that is mandatory before enrolment in this module is allowed.
No requireme	ents listed		

SYST H2602: Propulsion Systems 1

Module Content & Assessment

Indicative Content

Fundamentals

Potential energy, kinetic energy, Newton's laws of motion, Brayton cycle; Otto Cycle, Diesel Cycle. The relationship between force, work, power, energy, velocity, acceleration; Constructional arrangement and operation of turbocharged, supercharged, turbojet, turbofan, turboshaft, turboprop.

Piston Engine Construction

Crankcase, crankshaft, camshafts, sumps, accessory gearbox, cylinder and piston assemblies, connecting rods, inlet and exhaust manifolds, valve mechanisms, propeller reduction gearboxes.

Gas Turbine Construcion.

Inlets, Compressors, Combustors, Turbines and Exhaust

Propeller Fundamentals

Blade element theory; High/low blade angle, reverse angle, angle of attack, rotational speed; Propeller slip; Aerodynamic, centrifugal, and thrust forces; Torque; Relative airflow on blade angle of attack; Vibration and resonance

Propeller Construction

Construction methods and materials used in wooden, composite and metal propellers; Blade station, blade face, blade shank, blade back and hub assembly; Fixed pitch, controllable pitch, constant speeding propeller; Propeller/spinner installation

Propeller Pitch Control

Speed control and pitch change methods, mechanical and electrical/electronic; Feathering and reverse pitch; Overspeed protection. Reverse pitch protection and associated electronic systems.

Piston Engine Supercharging / Turbocharging.

Principles and purpose of supercharging and its effects on engine parameters, construction and operation of supercharging / turbocharging systems, system terminology, control systems, system operation and system protection.

Bearings and Seals

Constructional features and principles of operation

Lubricants and Fuels

Properties and specifications; Fuel additives; Safety precautions.

Lubrication Systems

System operation/lay-out and components

Fuel Systems

Operation of engine control and fuel metering systems including electronic engine control (FADEC); Systems lay-out and components.

Starting and Ignition Systems

Operation of engine start systems and components; Ignition systems and components; Maintenance safety requirements

Engine Indication Systems

Exhaust gas temperature/ Interstage turbine temperature systems, engine speed, engine thrust Indication: engine pressure ratio (EPR), engine Turbine Discharge pressure or jet pipe pressure systems, Oil pressure and temperature, Fuel pressure, temperature and flow, Manifold pressure, Engine torque and Propeller speed, Exhaust gas analysis.

Turbo-prop Engines Gas coupled/free turbine and gear coupled turbines; Reduction gears; Integrated engine and propeller controls; Overspeed safety devices.

Auxiliary Power Units (APUs)

Purpose, operation, protective systems

Fire Protection Systems

Operation of detection and extinguishing systems

Engine Monitoring and Ground Operation

Procedures for starting and ground run-up; Interpretation of engine power output and parameters; Trend (including oil analysis, vibration and boroscope) monitoring; Inspection of engine and components to criteria, tolerances and data specified by engine manufacturer; Compressor washing/cleaning; Foreign Object Damage.

Propeller Synchronisation and Synchrophasing Beat frequency, master, slave

Sustainability

Methods to reduce engine emissions and engine noise.

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous As	sessment			
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Each student will take short answer question exams, administered during term time for which a maximum of 10% will be awarded	1,2	10.00	Week 4
Examination	Each student will take short answer question exams, administered during term time for which a maximum of 10% will be awarded	2,4	10.00	Week 10

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Each student will complete practical tasks during the module with a brief task report, administered during term time for which a maximum of 20% will be awarded.	3	20.00	Every Week

End of Module	Formal Examination			
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	Each student will sit a formal written examination a the end of the module for which a maximum of 70% will be awarded.	1,2,3,4	60.00	End-of- Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

SYST H2602: Propulsion Systems 1

Module Workload

Workload: Full Time				
Workload Type	Frequency	Average Weekly Learner Workload		
Lecture	12 Weeks per Stage	3.00		
Practicals	12 Weeks per Stage	2.00		
Independent Learning	15 Weeks per Stage	4.33		
	Total Hours	125.00		

Module Delivered In				
Programme Code	Programme	Semester	Delivery	
CW_EEAER_B	Bachelor of Engineering (Honours) in Aerospace Engineering	3	Mandatory	
CW_EEACS_D	Bachelor of Engineering in Aircraft Systems	3	Mandatory	