

COAP H4601: Aerodynamics and Computational Analysis

Module Title:			Aerodynamics and Computational Analysis		
Language of Instruction:		n:	English		
		10			
Credits:		10			
NFQ Level: 8		8			
Module Delivered In			1 programme(s)		
Teaching & Learning Strategies:			Teaching will be a blend of lectures and laboratories		
Module Aim:			o provide the students with a comprehensive understanding of compressible, incompressible, inviscid and riscous flow, and the skills and techniques required to perform analyse fluid dynamics processes using an ndustry standard CFD package.		
Learning Ou	itcomes				
On successfi	ul completio	n of th	his module the learner should be able to:		
LO1	Apply aerodynamic principles including physical quantities of a flowing gas				
LO2	Examine various aerodynamic theorems				
LO3	Perform calculations for both inviscid and viscous flow				
LO4	Calculate lift/drag/moment coefficients in terms of airfoils, wings and other aerodynamic shapes				
LO5	Analyse Computational Fluid Dynamics (CFD) processes using industry standard software		tational Fluid Dynamics (CFD) processes using industry standard software		
LO6	Prepare CAD models to perform meshing processes for CFD analysis		odels to perform meshing processes for CFD analysis		
Pre-requisit	e learning				
Module Recommendations This is prior learning (or a practical skill) that is recommended before enrolment in this module.					
No recommendations listed					
Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module.					
No incompatible modules listed					
Co-requisite Modules					
No Co-requisite modules listed					
Requirements This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.					
No requirements listed					

COAP H4601: Aerodynamics and Computational Analysis

Module Content & Assessment

Indicative Content

Fundamentals

Physical quantities of a flowing gas; Source of all aerodynamic forces; Equation of state for a perfect gas

Standard Atmosphere

Hydrostatic equation; Geometric and geopotential altitudes; Standard atmosphere definition; Pressure, temperature and density altitudes

General Aerodynamics

Continuity and momentum equations; Thermodynamics; Isentropic flow; Energy equations; Subsonic wind tunnels Airspeed measurement; Viscous flow; Reynolds number; Laminar and turbulent boundary layers; Transition; Flow separation; Viscous effects on drag

Aerofoils, wings and wind turbines Airfoil nomenclature; Lift, Drag and Moment coefficients; Airfoil data (NACA); Infinite versus finite wings; Pressure coefficient; Obtaining lift coefficient from Cp; Compressibility correction for Lift Coefficient; Critical Mach number and Critical Pressure Coefficient; Airfoil drag; Calculation of induced drag; Change in the lift slope; Swept wings; Wind Turbine Aerodynamics

Introduction to Computational Fluid Dynamics

Introduction to the CFD Methodology • Cell Zone and Boundary Conditions • Post-Processing with CFD-Post • Solver Settings •
Turbulence Modelling • Heat Transfer • Transient Flows • Moving Zones • Multiphase Flows • HPC • Best Practices

CFD Dynamic Meshing

 Dynamic Mesh Zones with UDF's and Profiles
Layering Mesh Method
Smoothing Mesh Method
Remeshing
Coupled 6DOF Convergence • Best Practices

Assessment Breakdown	%
Continuous Assessment	60.00%
End of Module Formal Examination	40.00%

Continuous Assessment						
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date		
Examination	Students will sit a mid-term class test in Aerodynamics	1,2,3,4	10.00	n/a		
Practical/Skills Evaluation	Students will sit at least 1 test in CFD	1,5,6	20.00	n/a		
Practical/Skills Evaluation	Completion of subsonic aerodynamic experiments to demonstrate the principles of lift, drag and moment coefficients using a wind tunnel or suitable simulation software	1,2,3,4	10.00	n/a		
Project	Students will complete a project investigating fluid flow around an object using a CFD packages	4,5,6	20.00	n/a		

No Project

No Practical

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	n/a	1,2,3,4	40.00	End-of-Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

COAP H4601: Aerodynamics and Computational Analysis

Module Workload

Workload: Full Time				
Workload Type	Frequency	Average Weekly Learner Workload		
Lecture	12 Weeks per Stage	4.00		
Laboratory	12 Weeks per Stage	4.00		
Independent Learning Time	15 Weeks per Stage	10.27		
	Total Hours	250.00		

Module Delivered In					
Programme Code	Programme	Semester	Delivery		
CW_EEAER_B	Bachelor of Engineering (Honours) in Aerospace Engineering	7	Mandatory		