

ENGR C2F04: Materials Science in Engineering

Module Title:	Materials Science in Engineering					
Language of Instructio	n: English					
Credits:	5					
NFQ Level:	6					
Module Delivered In	4 programme(s)					
Teaching & Learning Strategies:	This module introduces a contemporary materials science education curriculum, with the aim of helping technological development and increasing innovations. The Material's Science in Engineering will combine visual and tactile experiences in order to develop an understanding of materials. These contemporary content delivery techniques will be embelished with in-class discussion, Active & Cooperative Learning experiences, combined with exposure to relevant integrating technologies and supported independent learning.					
Module Aim:	To provide the student with a broad knowledge of Materials, Material Science and the methods of altering material properties. To provide the student with an understanding of the internal effects of forces applied to members in structures and mechanisms, as evidenced by the stresses and deformations produced. To provide the student with an understanding of the response of structures due to the properties of materials.					

Learning (Learning Outcomes				
On succes	On successful completion of this module the learner should be able to:				
LO1	Describe and apply the basic fundamentals of Material Science for Mechanical Engineering				
LO2	Explain the characteristics, properties, degradation phenomena, and identification of ferrous/non-ferrous metals and alloys, polymers, ceramics, hybrids/composites, and biomaterials.				
LO3	Analyse loads on mechanical components in order to determine the type and distribution of resulting reactions and the type and distribution of induced stress and strain.				
LO4	Apply simplified models of stress and strain to representative systems in order to determine relationships between loads and the corresponding stress and strain using mechanical material properties.				
LO5	Quantify, by calculation and experimental measurement, the characteristic response of materials and mechanical systems.				

Pre-red	wisite	learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

ENGR C2F04: Materials Science in Engineering

Module Content & Assessment

Indicative Content

Atoms, Molecules and Crystals

Electron, Proton, Neutron Structure of the atom, states of matter Chemical bonding of atoms, Carbon and its compounds, Intermolecular forces Lattice structures, Dendritic solidification, Impurities in Cast metals, Influence of cooling rates on crystal size.

Introduction to Non-Ferrous metals and alloys, including binary and eutectic phase diagrams.

Ferrous Metals & Heat Treatments

Introduction to Steels and Cast Irons, including the Fe-C phase diagram.

Ceramics, semiconductor materials & Bio-Materials

Introduction to Ceramics and Bio-Materials

Polymers & Composites

Introduction to Thermoplastics, Thermosets, and Elastomers.

Mechanical Properties and Testing

Stress (Tensile, Compressive, Shear, Impact), Strain, Young's Modulus of Elasticity, Hooke's law, Static and Dynamic Testing, Hardness, Impact Strength, Wear and Corrosion and mitigating techniques.

Production techniques

Introduction to traditional and modern (additive, subtractive) manufacturing techniques.

Uniaxial Stress
Statically indeterminate force/stress systems Induced stress due to changes in volume and thermal effects

Statically Indeterminate Systems, Torsion in thin walled shells.

Couplings

Standard pin couplings, calculations and detailing; Shear pins and mechanical overload devices. Fluid couplings.

Beams and BendingBending Equation, Normal stress due to bending moment.

Energy Theorems Helical Springs

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	30.00%
End of Module Formal Examination	50.00%

Continuous Assessment					
Assessment Type Assessment Description Outcome addressed % of total Date					
Examination	Online in-term tests.	1,2,3	10.00	Ongoing	
Presentation	Screencast laboratory presentation.	1,2,3,4,5	10.00	Week 10	

No Project

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	Complete experiments and submit technical reports.	1,2,3,4,5	20.00	n/a	
Practical/Skills Evaluation	Computer Competencies Assignment	3,4	10.00	End-of-Semester	

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	End of term examination.	1,2,3,4,5	50.00	End-of-Semester

Continuous Assessment					
Assessment Type Assessment Description Outcome addressed % of total Date					
Multiple Choice Questions	Online in-term tests.	1,2,3	10.00	Ongoing	
Presentation	Screencast laboratory presentation.	1,2,3,4,5	10.00	Week 10	

No Project	

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	Complete experiments and submit technical reports.	1,2,3	30.00	n/a	

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	End of term examination.	1,2,3,4,5	50.00	End-of-Semester	

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

ENGR C2F04: Materials Science in Engineering

Module Workload

Workload: Full Time			
Workload Type	Frequency	Average Weekly Learner Workload	
Lecture	12 Weeks per Stage	2.00	
Lecture	12 Weeks per Stage	2.00	
Laboratory	12 Weeks per Stage	1.00	
Independent Learning	15 Weeks per Stage	4.33	
	Total Hours	125.00	

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EFARG_B	Bachelor of Engineering (Honours) in Agricultural Systems Engineering	4	Mandatory
CW_EMMEC_B	Bachelor of Engineering (Honours) in Mechanical Engineering	4	Mandatory
CW_EFARG_D	Bachelor of Engineering in Agricultural Systems Engineering	4	Mandatory
CW_EEMEC_D	Bachelor of Engineering in Mechanical Engineering	4	Mandatory