

# PHYS C1F02: Applied Physics for Agriculture 1

| Module Title:                   |   | Applied Physics for Agriculture 1                                                                                                                                                                                                               |
|---------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Language of Instruction:        |   | English                                                                                                                                                                                                                                         |
| Credits: 10                     |   |                                                                                                                                                                                                                                                 |
| NFQ Level:                      | 6 |                                                                                                                                                                                                                                                 |
| Module Delivered In             |   | 2 programme(s)                                                                                                                                                                                                                                  |
| Teaching & Learning Strategies: |   | Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences.                                                                                               |
| Module Aim:                     |   | The aim of this module is to provide the learner with an introduction to the principles of physics and their importance and relevance to sustainable agricultural science and engineering. The module will develop practical laboratory skills. |

| Learning Outcomes |                                                                                                                                                                                                                                                                |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| On success        | On successful completion of this module the learner should be able to:                                                                                                                                                                                         |  |  |  |  |
| LO1               | Interpret written descriptions of practical static and dynamic problems relating to agricultural engineering applications.                                                                                                                                     |  |  |  |  |
| LO2               | Translate written descriptions of practical static and dynamic engineering problems into mathematical form.                                                                                                                                                    |  |  |  |  |
| LO3               | Apply and solve formulae involving the interaction of the motion of an object and the forces and torques to which it is subjected with particular emphasis on agricultural applications.                                                                       |  |  |  |  |
| LO4               | Analysemathematically the relationship between the motion of a particle/rigid body and the forces to which it is subjected by the appropriate methods - Force-Mass-Acceleration/Energy/Impulse/Momentum - as applied to agricultural engineering applications. |  |  |  |  |
| LO5               | Contribute effectively, as an individual and as part of a group, to the planning and realization of investigations in a laboratory environment into the effects of applied forces on components.Report on the findings                                         |  |  |  |  |

| Pre-red | uisite | learning  |
|---------|--------|-----------|
| 116-164 | uisite | lear ming |

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

### Co-requisite Modules

No Co-requisite modules listed

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

CAD 1 or equivalent

## PHYS C1F02: Applied Physics for Agriculture 1

### **Module Content & Assessment**

### Indicative Content

• Mass, length, time, density, relative density, force, weight and the International system of units.

• Static Friction Coefficient, Coulombs Laws. • Non-Parallel Applied Force.

### Strength of Materials

• Direct Stress and Strain. • Hooke's Law. Modulus of elasticity. • Factor of Safety.

• Principle of Moments. • Static Equilibrium. • Reaction Forces. • Applications of Moments.

· Acceleration, Speed, Velocity, Displacement, Motion. · Newton's Laws of Motion. · Equations of Motion. · Velocity-Time Graphs.

· Laws of Friction. · Limiting Friction. · Friction on Horizontal and Inclined Planes.

Energy, Work and Power
• Work Done by a Force. Power. • Work done by Torque. • Tractive Effort and Tractive Resistance.

• Elastic and Non-Elastic Collisions. • Conservation of Momentum. • Kinetic Energy. • Potential Energy. • Conservation of Energy.

### **Circular Motion**

• Angular Velocity and Acceleration. • Equations of Motion. • Torque. • Moment of Inertia. • Combined Angular and Linear Motion. • Energy and Work.

\*Law of a Machine. \* Mechanical Advantage. \* Velocity ratio. \* Efficiency and Limiting \* Efficiency. \* Applications to Simple Machines.

### **Practical Laboratory Experiments**

Carry out a series of engineering lab experiments and produce relevant lab reports. Experiments will include: Principle of Moments • Centre of Gravity • Simple Machines •Stress and Strain • Hooke's Law• Coefficient of friction (Horizontal Plane) • Coefficient of friction (Inclined Plane) • Modulus of Rigidity • Young's Modulus

| Assessment Breakdown             | %      |
|----------------------------------|--------|
| Continuous Assessment            | 20.00% |
| Practical                        | 30.00% |
| End of Module Formal Examination | 50.00% |

| Continuous Assessment |                        |                      |               |                    |  |
|-----------------------|------------------------|----------------------|---------------|--------------------|--|
| Assessment Type       | Assessment Description | Outcome<br>addressed | % of<br>total | Assessment<br>Date |  |
| Examination           | Class test             | 1,2,3                | 20.00         | Week 6             |  |

No Project

| Practical                      |                                                                                                          |                      |               |                    |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|---------------|--------------------|--|
| Assessment Type                | Assessment Description                                                                                   | Outcome<br>addressed | % of<br>total | Assessment<br>Date |  |
| Practical/Skills<br>Evaluation | Conduct Applied Agricultural Science and Engineering Science Laboratory Experiments. Report on findings. | 5                    | 30.00         | Every Week         |  |

| End of Module Formal Examination |                             |                      |               |                 |  |
|----------------------------------|-----------------------------|----------------------|---------------|-----------------|--|
| Assessment Type                  | Assessment Description      | Outcome<br>addressed | % of<br>total | Assessment Date |  |
| Formal Exam                      | End of semester examination | 1,2,3,4              | 50.00         | End-of-Semester |  |



# PHYS C1F02: Applied Physics for Agriculture 1

## Module Workload

| Workload: Full Time  |                       |                                       |  |  |
|----------------------|-----------------------|---------------------------------------|--|--|
| Workload Type        | Frequency             | Average Weekly<br>Learner<br>Workload |  |  |
| Lecture              | 12 Weeks<br>per Stage | 2.00                                  |  |  |
| Laboratory           | 12 Weeks<br>per Stage | 2.00                                  |  |  |
| Lab/Lecture          | 12 Weeks<br>per Stage | 2.00                                  |  |  |
| Independent Learning | 15 Weeks<br>per Stage | 11.07                                 |  |  |
|                      | Total Hours           | 238.00                                |  |  |

## Module Delivered In

| Programme Code | Programme                                                             | Semester | Delivery  |
|----------------|-----------------------------------------------------------------------|----------|-----------|
| CW_EFARG_B     | Bachelor of Engineering (Honours) in Agricultural Systems Engineering | 1        | Mandatory |
| CW_EFARG_D     | Bachelor of Engineering in Agricultural Systems Engineering           | 1        | Mandatory |