

AGRI C3F02: Agricultural Design, Simulation and Analysis

Module Title:		Agricultural Design, Simulation and Analysis		
Language of I	nstruction:	English		
Credits:	10			
	7			
NFQ Level:	1			
Module Delive	ered In	2 programme(s)		
Teaching & Le Strategies:	earning	Lectures, laboratories, demonstrations, research, project work and some study will be used to ensure the student has a wide range of experiences.		
Module Aim:		The aim of this module is to provide students with an in-depth knowledge of the design process and design evolution of components as well as failure criteria and stress / strain analysis for agricultural components and machinery.		
Learning Outc	comes			
On successful o	completion of	his module the learner should be able to:		
LO1 C	Describe the st	ress at a point within a material / component, predicting the behaviour and/or failure of the material / en subjected to loads with particular emphasis on agricultural applications.		
LO2 A ti	Apply models of the correspond	f stress / strain to representative agricultural systems in order to determine relationships between loads and ing deflection.		
LO3 E	Develop finite e	element models of simple agricultural structures to solve for load, deflection and stress.		
LO4 E	Develop mesh software.	generation strategies for two and three-dimensional geometrical arrangements using industry standard		
LO5 A	Application of F	E.A. to typical agricultural engineering design problems.		
LO6 C	Quantify, by ca	culation and experimental measurement, the characteristic response of an agricultural system.		
Pre-requisite l	learning			
Module Recon This is prior lea	mmendations arning (or a pra	ctical skill) that is recommended before enrolment in this module.		
No recommendations listed				
Incompatible Modules These are modules which have learning outcomes that are too similar to the learning outcomes of this module.				
No incompatible modules listed				
Co-requisite Modules				
No Co-requisite	e modules liste	d		
Requirements This is prior lea	s arning (or a pra	ctical skill) that is mandatory before enrolment in this module is allowed.		
CAD 1 or equiv	valent			

AGRI C3F02: Agricultural Design, Simulation and Analysis

Module Content & Assessment

Indicative Content

Stress strain relations

Plane stress.
 Mohr's stress circle.
 Three-dimensional stress

Failure Criteria

· Rankine, Tresca & von Mises Failure criteria. • Stress concentrations.

Slope and Deflection of Beams • Integration method. • Macaulay functions.

Finite Element Method

• Introduction to stiffness matrices. • Finite elements. • Co-ordinates systems. • Types of elements. • Manual analysis of simple structures.

Meshing

ANSYS Meshing Basics
 Meshing Methods
 Global Mesh Controls
 Local Mesh Control
 Assembly Meshing
 Mesh Quality

Finite Element Analysis

 General Pre-processing. • Modelling Connections. • Remote Boundary Conditions and Constraint Equations. • Static Structural Analysis. •
Modal Analysis. • Thermal Analysis. • Multistep Analysis. • Results and Post-Processing. Mechanical Nonlinear Connections and Contact • Interface Treatments • Bolt Pretension • Modeling Gaskets • Accessing Advanced Contact Features via MAPDL • General Contact Technology • Best Practices

Shear and Torsion

Modulus of elasticity. • Application to compound sections. • Shear stress and shear strain. • Modulus of Rigidity. • Torsion in solid and hollow shafts: Relationship betweentorque, shear stress, polar second moment of area, angle of twist. • Drive shaft configurations, cardinal shafts, balancing effect and coupling arrangements. • Power Transmission.

Assessment Breakdown	%
Continuous Assessment	25.00%
Project	30.00%
Practical	45.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Class test	1,2,3	25.00	Week 12

Project				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	Students will complete projects investigating design issues and redesign solutions using CAD / FEA.	4,5,6	30.00	Sem 1 End

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Laboratory Experiments utilising engineering labs and FEA software.	3,4,5,6	45.00	Every Week
		•		

No End of Module Formal Examination

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

AGRI C3F02: Agricultural Design, Simulation and Analysis

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	2.00
Laboratory	12 Weeks per Stage	3.00
Lab/Lecture	12 Weeks per Stage	1.00
Independent Learning	15 Weeks per Stage	11.07
	Total Hours	238.00

Module Delivered In			
Programme Code	Programme	Semester	Delivery
CW_EFARG_B	Bachelor of Engineering (Honours) in Agricultural Systems Engineering	5	Mandatory
CW_EFARG_D	Bachelor of Engineering in Agricultural Systems Engineering	5	Mandatory