

DIGT H2602: Digital Electronic Systems

Module Title:			Digital Electronic Systems		
Language of Instruction:		n:	English		
Credits:		10			
NFQ Level:		6			
Module Delivered In			No Programmes		
Teaching & Learning Strategies:			(a) A combination of lectures, class discussion, tutorials, practicals and demonstrations will be used. (b) Particular emphasis will be placed on active learning including problem/project based learning		
Module Aim:			To introduce students to the fundamentals of digital electronic systems and microprocessor hardware		
Learning Ou	Learning Outcomes				
On successful completion of this module the learner should be able to:					
LO1	Describe the operation of, and analyze using Boolean algebra techniques, combinational and sequential components a circuits		eration of, and analyze using Boolean algebra techniques, combinational and sequential components and		
LO2	Explain the operation of a microprocessor-based system including operation of bus, memory and input/output.		ration of a microprocessor-based system including operation of bus, memory and input/output.		
LO3	Design and implement significant combinatorial digital circuits using conventional gates and logic components.				
LO4	Analyse a problem scenario leading to the design and implementation of a digital logic based solution using appropriate techniques.				
LO5	Demonstrate the ability to work effectively in a group, undertaking personal, administrative and organisational activiti associated with an efficient team.				

Pre-requisite learning

This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

"Introduction to Electronics" (section 9.1.1) or equivalent; "Principles of Electricity" (section 9.1.2) or equivalent; "Mathematics 1" (section 0.1.5 or equivalent

DIGT H2602: Digital Electronic Systems

Module Content & Assessment

Ind	liaativa	Content

Logic Gates

CMOS and TTL logic gates. Gate minimization using Karnaugh maps and Boolean Algebra

Number Systems

Numbers Systems including 2's complement, floating point.

Multivibrators

Bi Stable, Astable and monostable Multivibrators at gate level and using a 555 timer

Sequential logic design

Sequential logic - counters, state machines etc

Introduction to assembly code instructions.

Semiconductor memory

Embedded C

Introduction to Embedded C for microcontrollers.

Timing Considerations

Static Timing analysis for small gate level designs.

Microprocessors

Microprocessor architecture

Memory Addressing Memory Addressing

Semiconductor memory SRAM, DRAM, ROM and FLASH

Displays LCD, CRT and Plasma technologies

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Other	Students will be assigned a number of assignments as part of the assessment of this module. Students may be asked to complete assignments during tutorials or as homework	1,2,3,4,5	20.00	n/a	

No Project

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	Students will complete practical assignments during the course of the module. Students will be required to maintain a laboratory logbook and write a brief report on each assignment. A project based learning approach will be used; hence some assignments may take several weeks to complete.	1,3,4	10.00	n/a	
Practical/Skills Evaluation	Each student will complete two formal practical tests. A mark of up to 5% of the overall mark will be assigned for each test.	1,3	10.00	n/a	

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	A final written examination will assess the learning outcomes to the full extent	1,2,3	60.00	End-of- Semester	

DIGT H2602: Digital Electronic Systems

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	Every Week	2.00
Practicals	Every Week	2.00
Tutorial	Every Week	1.00
	Total Hours	5.00