

TRON H4616: **Microelectronic Design**

	Microelectronic Design
tion:	English
10	
8	
	No Programmes
l	Teaching will take the form of problem-based learning during tutorials and practical classes. An emphasis will be placed on relating individual circuits and devices to useful practical applications both in theory and practical classes. Circuit simulation software will be used extensively in the problem-solving sessions to validate student's solutions.
	To provide: Detailed analyses of semiconductor devices and their CAD models; Knowledge of circuit-level simulation tools; Methodologies for digital and analogue IC analysis and design.
	1.0

Learning Outcomes			
On successfo	On successful completion of this module the learner should be able to:		
LO1	Derive and utilise semiconductor device models in circuit design simulations.		
LO2	Layout and verify integrated circuit designs.		
LO3	Design and analyse analogue IC building blocks such as current mirrors and differential amplifiers.		
LO4	Design and analyse static and dynamic CMOS gates at a transistor level.		

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

Students should have completed a module equivalent to the following from CW527: Analysis of Analogue Circuits (yr3).

TRON H4616: Microelectronic Design

Module Content & Assessment

Indicative Content

1. Circuit Simulation

SPICE Device Elements; Semiconductor Devices; Analysis Modes and Techniques; Convergence Issues.

2. Semiconductor Fabrication

Wafer Preparation and Mask-making; Layering, Patterning and Doping; Electrical Tests and Die Packaging,

3. Semiconductor Device Modelling
Semiconductor Materials and their Properties; PN Junction and BJT Modelling; MOSFET Modelling; Amplifier Configuration.

4. Cascode Stages and Current Mirrors

MOS and bipolar Current Mirroring; Cascode Configurations; Temperature and Sensitivity Analysis; Voltage and Current Referencing.

Qualitative Analysis and Bipolar/MOSFET Differences; Small-Signal and Large-Signal Analysis; Cascode Differential Amplifiers; Common-Mode Rejection; Use of Active Loads.

6. Frequency Response

High-Frequency Device Modelling; Frequency Response of CE and CS Stages; Frequency Response of CC and CD Stages; Frequency Response of Cascode and Differential Stages.

7. Feedback

Properties of Negative Feedback; Feedback Topologies; Effect of Non-ideal I/O Impedances; Stability in Feedback Systems.

9. Digital CMOS Cells
Dynamic and Static Characterisation of Gates; CMOS Inverter; Static CMOS Logic Design; Power and Delay Considerations; Static Sequential Cell Design.

8. Mixed Signal Circuits
ADC and DAC Circuits; Switched-Capacitor Comparator; PLLs.

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Students will sit a series of written examinations during the module.	1,2,3	20.00	n/a

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Students will complete a series of practical assignments under supervision using circuit simulation software.	1,2,3	20.00	n/a

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	A written examination, at the end of the module, will examine the extent of the student's achievement of the learning outcomes	1,2,3,4	60.00	End-of- Semester

TRON H4616: Microelectronic Design

Module Workload

Workload: Full Time				
Workload Type	Frequency	Average Weekly Learner Workload		
Lecture	Every Week	2.00		
Laboratory	Every Week	2.00		
Tutorial	Every Week	1.00		
Estimated Learner Hours	Every Week	2.00		
	Total Hours	7.00		