

SCIE C1605: Aviation Science 1

Module Title:		Aviation Science 1
Language of Instruction:		English
Credits: 5		
NFQ Level: 6		
Module Delivered In		3 programme(s)
Teaching & Learning Strategies:		A combination of lectures, class discussion and demonstrations will be used. Particular emphasis will be placed on active learning including problem / project based learning.
Module Aim:		The student will understand basic and intermediate concepts of fluid dynamics and aerodynamic and how to apply these concepts to an aircraft design and performance during all stages of flight, so they develop simple aerodynamic analytical and troubleshooting skills.

Learning Outcomes					
On successful completion of this module the learner should be able to:					
LO1	Explain the theoretical fundamentals of the International Standard Atmosphere (ISA)				
LO2	Apply fundamentals of Fluid Dynamics for Aerodynamic Design.				
LO3	Describe basic aerodynamic fundamentals with the aid of sketches/drawings				
LO4	Perform wind tunnel testing, measurements and flow visualization				
LO5	Calculate flight forces in steady climbs, descents, glides and turns and give general descriptions of Theory of flight, Airplane/Rotary Aerodynamics, Flight Controls and Stability				

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

SCIE C1605: Aviation Science 1

Module Content & Assessment

Indicative Content

History of Aerodynamics up to Modern Era, Units and Dimensions, Properties and Classification of Flows, Fundamentals of Fluid Dynamics

Physics of the Atmosphere

International Standard Atmosphere (ISA), application to aerodynamics

Airflow around a body; Boundary layer, laminar and turbulent flow, free stream flow, relative airflow, upwash and downwash, vortices, stagnation; The terms: camber, chord, mean aerodynamic chord, profile (parasite) drag, induced drag, centre of pressure, angle of attack, wash in and wash out, fineness ratio, wing shape and aspect ratio; Thrust, Weight, Aerodynamic Resultant; Generation of Lift and Drag: Angle of Attack, Lift coefficient, Drag coefficient, polar curve, stall; Aerofoil contamination including ice, snow, frost.

Theory of Flight

Relationship between lift, weight, thrust and drag; Glide ratio; Steady state flights, performance; Theory of the turn; Influence of load factor: stall, flight envelope and structural limitations; Lift augmentation

Flight Stability and Dynamics

Longitudinal, lateral and directional stability (active and passive).

High Speed Flight

Speed of sound, pressure waves from a moving source, compressibility, Mach number, flight speed classifications, subsonic and supersonic flow patterns, development of shock waves, shock stall.

Experiments in Aerodynamics
Theoretical Knowledge of Instrumentation, Measurements related to Aerodynamics, Basics of Wind Tunnels from low-speed to High-Speed

Rotary wing aerodynamics

Rotor systems, flight controls, hovering flight, coriolis and ground effect, gyroscopic precession, transverse flow, disymmetry of lift,

Assessment Breakdown	%
Continuous Assessment	10.00%
Practical	30.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Continuous assessment tests during term time covering	1,2,5	10.00	n/a

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Pencil drawings & Sketches	3	10.00	n/a
Practical/Skills Evaluation	Aerodynamic Wind Tunnel Labs in Hangar	3,4	20.00	n/a

End of Module Formal Examination					
	Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
	Formal Exam	Each student will sit a formal written examination at the end of the module	1,2,3,5	60.00	End-of- Semester

SCIE C1605: Aviation Science 1

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	2.00
Practicals	12 Weeks per Stage	3.00
Independent Learning	15 Weeks per Stage	4.33
	Total Hours	125.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEAER_B	Bachelor of Engineering (Honours) in Aerospace Engineering	1	Mandatory
CW_EEACS_D	Bachelor of Engineering in Aircraft Systems	1	Mandatory
CW_EEPLT_D	Bachelor of Science in Pilot Studies	1	Mandatory