

ENGR H3603: Introduction to Space Engineering

Module Title:		Introduction to Space Engineering		
Language of Instruction:		English		
Credits:	5			
NFQ Level:	7			
Module Delivered In		1 programme(s)		
Teaching & Learning Strategies:		The module will be delivered with a blend of lectures and problem-solving sessions. Students will perform practical project activity for assigned tasks.		
Module Aim:		This module aims to provide an introductory understanding of space engineering. Introduction to space propulsion: chemical, electric propulsion and advanced propulsion concepts. Space standards and current space industrial trends and practice.		
Learning Outcome				
On successful completion of this module the learner should be able to:				

Learning Outcomes					
On successf	On successful completion of this module the learner should be able to:				
LO1	Demonstrate knowledge of space environment, planets, celestial bodies of interest.				
LO2	Analyse recent mission design elements and basic orbital maneuvers.				
LO3	Evaluate the elements of satellite and spacecraft and applications of small satellites.				
LO4	Describe the elements of space propulsion from launch systems to deep space propulsion and perform basic calculations.				
LO5	Review various Space Standards, current space industry trends and practices.				

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

ENGR H3603: Introduction to Space Engineering

Module Content & Assessment

Indicative Content

Space Environment & Celestial Bodies

Aspect of Space Environment, Challenges for space mission and human flights. Near Earth Environment, Solar System, Interstellar and Intergalactic Space Environment. International Space Station (ISS), Near Earth Asteroid, Earth-Moon System, Earth Sun System, Planets of Interest, Issues of Orbital Debris

Mission Design Concepts

Types of space missions and their objectives. Fundamental laws of orbital mechanics, Terminology and Orbit Types: Very Low Earth Orbit (VLEO), Geostationary Orbit (GEO), Low-earth Orbit (LEO), Medium Earth Orbit (MEO), Polar orbit and Sun-synchronous orbit (SSO), Transfer orbits and geostationary transfer orbit (GTO), Concepts of Orbital Maneuvers and Transfers, Orbital Rendezvous, Interplanetary Missions, Launch, Entry Descent Landing Concepts.

Elements of Spacecrafts

Anatomy of Spacecraft, systems approach to spacecraft and payload design, key design drivers and payload requirements. Attitude Determination and Control systems, Thermal control systems and subsystem design, Command and Data System, Telecommunications

Space Propulsion

Overview of spacecraft propulsion, Rocket Propulsion, Electric Propulsion Systems and performance evaluation. Spacecraft power subsystem, battery and solar array cells and sizing of a power subsystem, Brief on Advanced Space Propulsion Concepts: Laser, Microwave Propulsion, Solar Sail.

Space Industry Standards
Overview of emerging space industry trends, Small-satellite Trends and applications. Various European Cooperation for Space
Standardization (ECSS) and International Standard Organization (ISO) and other standards applicable to Space Industry, Space Law Treaties and Principles

Assessment Breakdown	%
Continuous Assessment	10.00%
Practical	30.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Students will complete a test covering Learning Outcomes 1 to 3.	1,2,3	10.00	Week 6

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Projects will be assigned and weekly progress will be monitored throughout the module.	1,2,3,4,5	20.00	Every Week
Practical/Skills Evaluation	Final Project report and presentation will be evaluated near the end of term.	1,2,3,4,5	10.00	End-of- Semester

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	A formal written exam where students will be required to perform calculations and answer descriptive questions.	1,2,3,4,5	60.00	End-of- Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

ENGR H3603: Introduction to Space Engineering

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	2.00
Lab/Lecture	12 Weeks per Stage	2.00
Independent Learning	15 Weeks per Stage	5.13
	Total Hours	125.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEAER_B	Bachelor of Engineering (Honours) in Aerospace Engineering	5	Mandatory