

PRTC C1602: Cockpit Technology

Cockpit Technology
English
0
1 programme(s)
A combination of lectures, class discussion, tutorial, laboratory exercises and demonstrations will be used. Emphasis will be placed on active learning including problem and/or project based learning.
To give students an understanding of digital electronics and avionics systems. Provide an appreciation of how the combination of digital sub-circuits form an overall functioning avionic system.
n: 1

Learning O	Learning Outcomes				
On successf	On successful completion of this module the learner should be able to:				
LO1	Classify the different numbering systems and their applications in digital electronics.				
LO2	Evaluate the different conversion techniques for analogue to digital transmission using different types of transmission media.				
LO3	Identify digital systems schematics and test the operation of these systems.				
LO4	Describe the principle of operation of different microprocessors and demonstrate how these devices are interfaced to peripherals.				
LO5	Perform fundamental calculations on a range of avionic circuits				

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

RequirementsThis is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

PRTC C1602: Cockpit Technology

Module Content & Assessment

Indicative Content

Numbering Systems and digital electronics

Numbering Systems: Binary, Octal and Hexadecimal; Demonstration of conversions between Decimal and Binary, Octal and Hexadecimal systems and vice versa

Data Conversion

Analogue Data, Digital Data; Operation and application of analogue to digital, and digital to analogue converters, inputs and outputs, limitations of various types.

Logic Circuits

Identification of common logic gate symbols, tables and equivalent circuits; Applications used for aircraft systems, schematic diagrams. Interpretation of logic diagrams.

Basic Computer Structure

Computer terminology (including bit, byte, software, hardware, CPU, IC, and various memory devices such as RAM, ROM, PROM); Computer technology (as applied in aircraft systems). Computer related terminology; Operation, layout and interface of the major components in a micro-computer including their associated bus systems; Information contained in single and multi-address instruction words; Memory associated terms; Operation of typical memory devices; Operation, advantages and disadvantages of the various data storage systems.

Microprocessors

Functions performed and overall operation of a microprocessor; Basic operation of each of the following microprocessor elements: control and processing unit, clock, register, arithmetic logic unit

Integrated Circuits

Operation and use of encoders and decoders; Function of encoder types

Multiplexing

Operation, application, and identification in logic diagrams of multiplexers and demultiplexers.

Software Management Control

Awareness of restrictions, airworthiness requirements and possible catastrophic effects of unapproved changes to software programmes

Typical Electronic/Digital Aircraft Systems

Cockpit layout, general arrangement of typical electronic/digital Aircraft Systems and associated BITE (Built In Test Equipment) testing such as: ACARS-ARINC Communication and Addressing and Reporting System, ECAM-Electronic Centralised Aircraft Monitoring, ADS,EFIS-Electronic Flight Instrument System, EICAS-Engine Indication and Crew Alerting System, FBW-Fly by Wire, FMS-Flight Management System, GPS-Global Positioning System, IRS-Inertial Reference System, TCAS-Traffic Alert Collision Avoidance System. MEMS sensors

Data-huses

Operation of data bus in aircraft systems including knowledge of ARINC and other applications. Aircraft Network / Ethernet

Transistors

Transistor symbols; Component description and orientation; Transistor characteristics and properties. Construction and operation of PNP and NPN transistors; Operation of Transistor Amplifiers; Construction and operation of FETs.

Assessment Breakdown	%
Continuous Assessment	10.00%
Practical	30.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Other	Various assessments to reinforce learnings given throughout the semester.	1,2,4	10.00	Ongoing

No Project

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	A set of practical exercises to complement the theory elements of the module.	2,3,4,5	30.00	n/a	

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	Final Exam	1,2,4,5	60.00	End-of-Semester	

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Other	Various assessments to reinforce learnings given throughout the semester.	1,2,4	10.00	Ongoing

No Project

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	A set of regular practical exercises to complement the theory elements of the module.	2,3,4,5	30.00	n/a	

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	n/a	1,2,4,5	60.00	End-of-Semester	

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

PRTC C1602: Cockpit Technology

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	12 Weeks per Stage	5.00
Laboratory	12 Weeks per Stage	4.00
Independent Learning Time	15 Weeks per Stage	9.47
	Total Hours	250.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEPLT_D	Bachelor of Science in Pilot Studies	2	Mandatory