

DIGT C2602: Analogue and Digital Electronics 1

University				
Module Title:		Analogue and Digital Electronics 1		
Language of Instruction:		English		
Credits:		0		
NFQ Level:				
Module Del	ivered In	3 programme(s)		
Teaching & Learning Strategies:		a) This will take the form of problem-based learning during tutorials and practical classes. (b) An emphasis will be placed on relating individual circuits to useful application systems both in theory and practical classes. (c) Circuit simulation software may be used in the problem-solving sessions to validate student solutions.		
Module Aim:		To give the students the knowledge, competencies and skills to analyse commonly used analogue and digital systems.		
Learning Outcomes				
On successful completion of this module the learner should be able to:				
LO1	Understand and analyse the operation of common amplifiers and electronic switches using BJT transistors			
LO2 Understand and		and analyse the operation of common amplifiers and electronic switches using FETs transistors		

Design and implement significant combinatorial digital circuits using conventional gates and logic components.

Analyse a problem scenario leading to the design and implementation of a digital logic based solution using appropriate

Pro-ron	uuieita	learning

LO3

LO4

LO5

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

Undertand and explain the operation of common aplifiers using operational amplifiers.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements

This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

DIGT C2602: Analogue and Digital Electronics 1

Module Content & Assessment

Indicative Content

Bipolar Transistor Amplifiers

Describe the operation of basic BJT bias circuits. - Explain the meaning of transistor parameters and characteristics. - Describe and analyse the operation of a common-emitter amplifier. - Describe and analyse the operation of a common-collector amplifier. - Describe and analyse the operation of a common-base amplifier. - Explain how a transistor can be used as a switch.

FET Transistor Amplifiers

Describe and analyse the operation of a common-source amplifier. - Describe and analyse the operation of a common-drain amplifier. -Describe and analyse the operation of a common-gate amplifier. - Explain how a transistor can be used as a switch.

Operational Amplifiers

Describe the operation of a differential amplifier. - Describe the effects of negative feedback in op-amp circuits. - Calculate the input and output impedances and gains of basic op-amp configurations. - Describe the open and closed loop responses of op-amps. - Discuss the concepts of positive feedback and stability in op-amp circuits. - Discuss the parameters of typical commercial operational amplifiers.

CMOS and TTL logic gates. Gate minimization using Karnaugh maps and Boolean Algebra

Number Systems

Numbers Systems including 2's complement, floating point.

Sequential logic design

Sequential logic - counters, state machines etc

Memory

Semiconductor memory

Timing ConsiderationsStatic Timing analysis for small gate level designs.

Memory Addressing

Memory Addressing

Assessment Breakdown	%
Continuous Assessment	30.00%
Practical	20.00%
End of Module Formal Examination	50.00%

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Other	Class Test, Mini Project	1,2,3,4,5	30.00	n/a	

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Laboratory Experiments, Problem Solving practical exercises	1,2,3,4,5	20.00	n/a

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	Formal written exam	1,2,3,4	50.00	End-of-Semester	

DIGT C2602: Analogue and Digital Electronics 1

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	Every Week	6.00
Laboratory	Every Week	4.00
Independent Learning Time	Every Week	3.00
	Total Hours	13.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEBEE_B	Bachelor of Engineering (Honours) in Biomedical Electronics	3	Mandatory
CW_EESYS_B	Bachelor of Engineering (Honours) in Electronic Engineering	3	Mandatory
CW_EEBEE_D	Bachelor of Engineering in Biomedical Electronics	3	Mandatory