

COMP C4602: Computer Vision

Module Title:		Computer Vision
Language of Instruction:		English
Credits:	5	
NFQ Level:	8	
Module Delivered	l In	1 programme(s)
Teaching & Learn Strategies:	ning	This module will be delivered through a mix of lectures, laboratory assignments, and projects including a professional write-up. It will employ a mixture of active/task-based learning, reflective learning, and problem-based learning.
Module Aim:		Computer vision has become commonplace in applications ranging from search to medical application and self-driving cars. This module shall investigate how images are acquired and information extracted by the computer using classical algorithms. The module shall cover how computers represent objects and their alignment and allow students to locate and track feature movement between images.

Learning Outcomes					
On successfu	On successful completion of this module the learner should be able to:				
LO1	Assemble an image acquisition system, demonstrating an understanding of its constituent components.				
LO2	Design an image acquisition system to demonstrate an understanding of enhancement and pattern matching within images.				
LO3	Demonstrate the use of algorithms to track feature movement and displacement between frames of images.				
LO4	Collect depth information from multiple (stereo) images and track the location of the feature in the z-plane.				
LO5	Complete a project as an individual or in a small group to design and implement a solution for a real world problem.				

Pre-requisite learning

Module RecommendationsThis is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

A high-level language, statistics, linear algebra.

COMP C4602: Computer Vision

Module Content & Assessment

Indicative Content

Image acquisition system using COTS components. Camera, lenses and lens distortion, focal length, aperture, depth of field, exposure, shutter speed, frame rate affect on quality of the image acquisition. Improvements to image acquisition using passive and active lighting, flashes, radiometry.

Introduction to image enhancement in both the spatial and frequency domains. Contrast enhancement and transformations. Histogram processing. Filtering.

Pattern matching

Image convolution and feature detection, e.g. detection of edges and identifying features. Application of feature detectors and descriptors such as MOG, HOG, SIFT, SURF etc.

Track the direction of feature movement using motion estimation, alignment, parametric and layered motion, etc.

Depth interpolation

Extract depth information using, e.g. epipolar geometry techniques and show different styles of correspondence (dense, sparse) to interpret the depth of a set of images.

Ethics and Safety
Ethical use and bias in captured data, reliable use of computer vision in safety systems

Assessment Breakdown	%
Continuous Assessment	20.00%
Project	40.00%
Practical	40.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Short Answer Questions	n/a	1,2	20.00	Week 4

Project				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	n/a	1,2,3,4,5	40.00	Sem 2 End

Practical					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Practical/Skills Evaluation	n/a	1,2,3,4	40.00	Every Week	

No End of Module Formal Examination

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

COMP C4602: Computer Vision

Module Workload

Workload: Full Time			
Workload Type	Frequency	Average Weekly Learner Workload	
Lecture	Every Week	2.00	
Laboratory	Every Week	3.00	
Independent Learning	Every Week	5.00	
	Total Hours	10.00	

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEROB_B	Bachelor of Engineering (Honours) in Robotics and Automated Systems	7	Mandatory