

ZBRE C2101: Mechanical and Electrical Technology in Brewing and Distilling

Module Title:		Mechanical and Electrical Technology in Brewing and Distilling				
Language of Instruction:		English				
Credits: 10						
NFQ Level: 6						
Module Delivered In		1 programme(s)				
	·					
Teaching & Learning Strategies:		This module will be delivered through lectures and practical sessions. A variety of active learning strategie will be employed to ensure that the learning objectives are met. The practical component will support the theoretical aspects of the module and promote deep learning via, the formulation of simple hypotheses, structured investigation of simple problems and application of prior knowledge				
Module Aim:		The aim of this module is to provide the student with an introduction to the principles of physics for brewing and distilling and to develop practical laboratory skills in physics for brewing and distilling.				
Learning Outcomes	Learning Outcomes					
On successful completion	On successful completion of this module the learner should be able to:					

On successful completion of this module the learner should be able to:			
Explain the fundamental principles of heat transfer and fluid flow.			
Describe compressed air and steam generation and distribution systems.			
Recognise the relevance of materials of construction in the context of brewing and distilling requirements			
Identify types of control systems used in brewing and distilling manufacturing process			
Explain the operation of a PLC, how inputs and outputs are connected to it, how a program is executed inside it and how information can be taken from it.			

Pre-requisite learning

Module RecommendationsThis is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules
These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

ZBRE C2101: Mechanical and Electrical Technology in Brewing and Distilling

Module Content & Assessment

Indicative Content

Process Instrumentation 1

Principle of operation and use of process instrumentation including the 4-20mA analogue output. • - Pressure switches - Pressure transmitters, single and differential. • Temperature - Principles and construction of RTD,s - Measurement systems for RTD,s - - • Level - Mechanical (float based) level systems - Capacitance type level systems - Ultrasonic type level systems - Load cell type level systems • Flow - Differential type flow meters - Volumetric flow meters - Mass Flow meters

Electrical Systems

Lock Out-Tag Out, Safety systems, RCDs, MCBs, Earthing & Bonding, Single & three phase theory, Electricity in the workplace.

Control Systems 1

Definition, description and aims of sequential control including sensors, controllers and actuators • Pneumatic control - Cascade control - Electro/Pneumatic control - Electro-Pneumatic symbols used in pneumatic circuit design - Pneumatic Valves - Solenoids - Actuators - Circuit design - Grouping relays - Safety precautions • Electronic Control - Variable Speed Drives, • PLC's - Range of PLC's and their applications - Programming methods

Fluid Mechanics

• Properties of fluids and fluid flow • Newtonian and non-Newtonian fluids (with brewery examples) • Pipe networks and fluid friction • Pumps and pumping equipment

Steam Generation and Steam systems

• Properties of steam • Steam boilers and operation • Steam distribution and condensate recovery

Principles of Heat Transfer & Heat Exchangers

• Newton's law of cooling • Fourier's law of conduction • Conductance of solid layers • Conductance of boundary layers • Heat losses & gains from surfaces, • Log Mean Temperature Difference • Heat exchangers

Refrigeration & Cooling

• Introduction to refrigeration cycles & evaporative cooling • Cooling towers

Assessment Breakdown	%
Continuous Assessment	30.00%
Practical	40.00%
End of Module Formal Examination	30.00%

Special Regulation

Students must achieve a minimum grade (35%) in the CA/Practical and Final Examination

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Multiple Choice Questions	Written class tests and or online assessment may be employed to encourage individual learning.	1,2,3,5	30.00	Ongoing

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Practical laboratory exercises include; • Hardwiring electropneumatic circuits, direct and indirect wiring of contactors, timer blocks. • Basic programming of VSD • Basic programming of PLC's using simulation software. • Verification of various instruments accuracy and repeatability.	4,5	40.00	Every Second Week

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	A final written examination will assess the extent to which the student has achieved the module learning outcomes.	1,2,3,4	30.00	End-of- Semester

ZBRE C2101: Mechanical and Electrical Technology in Brewing and Distilling

Module Workload

Workload: Full Time			
Workload Type	Frequency	Average Weekly Learner Workload	
Lecture	12 Weeks per Stage	6.00	
Laboratory	12 Weeks per Stage	2.00	
Independent Learning	15 Weeks per Stage	10.27	
	Total Hours	250.00	

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_SABRE_B	Bachelor of Science (Honours) in Brewing and Distilling	3	Mandatory