

SYST C2609: Introduction to Systems and Control

Module Title:			Introduction to Systems and Control		
Language of Instruction:		1:	English		
Credits:		5			
NFQ Level:		8			
Module Deliv	vered In		6 programme(s)		
Teaching & I Strategies:	Learning		This module will be delivered through a mix of lectures and laboratory assignments. It will employ a mixture of active/task-based learning, reflective learning and problem-based learning.		
Module Aim:			The aim of this module is to introduce and develop understanding of the dynamics of common systems, analyse their characteristics, control them using standard strategies, and simulate them in the laboratory.		
Learning Ou	tcomes				
On successfu	l completion	n of th	nis module the learner should be able to:		
LO1	Define dyna	amic	system behaviour in terms of stability, steady-state and transient response.		
LO2	Identify the	obje	ctives and principles of operation of general closed-loop automatic control systems.		
LO3	Represent	dyna	mic systems in transfer function form.		
LO4 Explain and utili		d utili	se feedback including parameterisation of (tune) PID controllers.		
LO5 Use analysis too		sis too	Is to simulate/analyse dynamic systems and their practical implementation using basic control techniques.		
D					
Pre-requisite	Pre-requisite learning				
Module Reco	ommendatio	ons			

This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements

This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

No requirements listed

SYST C2609: Introduction to Systems and Control

Module Content & Assessment

Indicative Content

Systems Transfer function and characterisation: e.g.: Transient, Steady state, Stability. Block diagram analysis/algebra.

Control Objectives of Automatic Control, Loop Block Diagrams, PID Control, definitions and the need for safety and ethical use of Automatic Control systems.

Analysis Mathematical modelling and simulation software. Signal analysis, Real-time spectral analysis, Off-line processing, Characterisation of a 2nd-order system

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Other	Various assessments to reinforce learnings given throughout the semester.	1,2,3,4	20.00	n/a	

No Project

Practical						
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date		
Practical/Skills Evaluation	A set of practical exercises to complement the theory elements of the module.	5	20.00	n/a		

End of Module Formal Examination					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Formal Exam	A final exam to assess the students' learning.	1,2,3,4	60.00	End-of-Semester	

Continuous Assessment					
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date	
Other	Various assessments to reinforce learnings given throughout the semester.	1,2,3,4	20.00	n/a	

No Project

Practical						
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date		
Practical/Skills Evaluation	A set of practical exercises to complement the theory elements of the module.	5	20.00	n/a		

End of Module Formal Examination						
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date		
Formal Exam	A final exam to assess students' learning.	1,2,3,4	60.00	End-of-Semester		

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

SYST C2609: Introduction to Systems and Control

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	Every Week	3.00
Laboratory	Every Week	2.00
Independent Learning Time	Every Week	4.00
	Total Hours	9.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EFARG_B	Bachelor of Engineering (Honours) in Agricultural Systems Engineering	6	Elective
CW_EMMEC_B	Bachelor of Engineering (Honours) in Mechanical Engineering	6	Elective
CW_EEROB_B	Bachelor of Engineering (Honours) in Robotics and Automated Systems	4	Mandatory
CW_EFARG_D	Bachelor of Engineering in Agricultural Systems Engineering	6	Mandatory
CW_EEMEC_D	Bachelor of Engineering in Mechanical Engineering	6	Elective
CW_EEROO_D	Bachelor of Engineering in Robotics and Automated Systems	4	Mandatory