

LANG C4601: Hardware Description Language

Module Title):		Hardware Description Language
Language of	f Instructio	n:	English
Credits:		5	
NFQ Level:		8	
Module Deli	vered In		2 programme(s)
Teaching & Strategies:	Learning		A combination of lectures, class discussion, tutorial, laboratory exercises and demonstrations will be used. Emphasis will be placed on active learning including problem / project bases learning.
Module Aim	:		To provide learners with the knowledge and skills needed to design, simulate, synthesis and validate a digital circuit using a contemporary hardware description language (HDL).
Learning Ou	itcomes		
On successfu	ul completio	n of th	his module the learner should be able to:
LO1	Use a Har	dware	Description Language (HDL) to synthesize combinational and sequential logic.
LO2	Use a Hare	dware es cor	Description Language (HDL) to create a test bench to simulate and validate a small digital system which mbinational and sequential logic
LO3	Design and	d imp	lement a finite state machine (FSM) using a hardware description language (HDL).
LO4	Interface a	in FP	GA to seven segment displays, Leds and mechanical switches (which are to be debounced).
Pre-requisit	e learning		
- i cquisit	olisanning		

 Module Recommendations

 This is prior learning (or a practical skill) that is recommended before enrolment in this module.

 No recommendations listed

 Incompatible Modules

 These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

 No incompatible modules listed

 Co-requisite Modules

 No Co-requisite modules listed

 Requirements

 This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

 No requirements listed

LANG C4601: Hardware **Description Language**

Module Content & Assessment

Indicative Content

Logic synthesis:

Logic synthesis using a MUX or LUT. Structure and operation of an FPGA.

Modelling techniques:

Gate-level, dataflow & behavioural modelling of digital systems. Combinational circuits - mux, decoder, priority encoder etc. Sequential circuits - registers, RAM, shift registers, counters etc Structural description of a hierarchical system. Synchronous design techniques.

HDL Language:

Lexical elements: comments, identifiers, numbers, strings etc. Data types: nets, registers, vectors, arrays. Operators, branching, looping etc. Procedural assignments: blocking and non-blocking. Sequential logic and event-based behaviour.

Finite state machine:

ASM charts, Moor & mealy machines, FSM encoding (one hot etc), HDL description of an FSM.

Design reuse: Economic benefits of design reuse. Parameterized models. IP. Libraries. Supporting documentation and testbench.

Introduction to design verification:

(pre-settable up/down counter). Generating and assigning test vectors. Instance of design under test (DUT). Reporting test results. Tasks and functions.

Systems issues:

Implications of design techniques for power, speed, timing and area. Static timing analysis. Debouncing transient signals from switches etc

Assessment Breakdown	%
Continuous Assessment	50.00%
Project	25.00%
Practical	25.00%

Continuous Assessment

Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Case Studies	n/a	1,2,3	50.00	n/a

Project				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Project	n/a	1,2,3,4	25.00	n/a

Practical Assessment Type Assessment Description Outcome % of Assessment addressed total Date Practical/Skills Evaluation 25.00 n/a 1,2,3,4 n/a No End of Module Formal Examination

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

LANG C4601: Hardware Description Language

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	Every Week	3.00
Practicals	Every Week	2.00
Independent Learning	Every Week	3.00
	Total Hours	8.00

Module Delivered In			
Programme Code	Programme	Semester	Delivery
CW_EEBEE_B	Bachelor of Engineering (Honours) in Biomedical Electronics	7	Mandatory
CW_EESYS_B	Bachelor of Engineering (Honours) in Electronic Engineering	7	Mandatory