

DSGN C4601: Microelectronic Design 1

English
2 programme(s)
Teaching will take the form of problem-based learning during tutorials and practical classes. An emphasis will be placed on relating individual circuits and devices to useful practical applications both in theory and practical classes. Circuit simulation software will be used extensively in the problem-solving sessions to validate students' solutions.
To provide: (a) Detailed analyses of semiconductor devices and their CAD models. (b) Knowledge of circuit-level simulation and layout tools. (c) Methodologies for digital and analogue IC analysis and design.

Learning Outcomes		
On successful completion of this module the learner should be able to:		
LO1	Carry out a variety of simulations using a modern circuit simulator.	
LO2	Derive and utilise semiconductor device models in circuit design simulations.	
LO3	Layout and verify integrated circuit designs.	
LO4	Design and analyse integrated amplifier circuits and cascodes.	
LO5	Design and analyse current mirrors & reference circuits.	
LO6	Design and analyse differential amplifiers.	

Pre-requisite learning

Module Recommendations
This is prior learning (or a practical skill) that is recommended before enrolment in this module.

No recommendations listed

Incompatible Modules

These are modules which have learning outcomes that are too similar to the learning outcomes of this module.

No incompatible modules listed

Co-requisite Modules

No Co-requisite modules listed

Requirements
This is prior learning (or a practical skill) that is mandatory before enrolment in this module is allowed.

Students should have completed a module equivalent to the following from CW527: Analysis of Analogue Circuits (yr3).

DSGN C4601: Microelectronic Design 1

Module Content & Assessment

Indicative Content

1. Circuit Simulation & Layout

SPICE Device Elements; Semiconductor Devices; Analysis Modes and Techniques; Full-Custom IC Layout.

2. Semiconductor Fabrication
Wafer Preparation and Mask-making; Layering, Patterning and Doping; Electrical Tests and Die Packaging.

3. Semiconductor Device Modelling
Semiconductor Materials and their Properties; PN Junction and BJT Modelling; MOSFET Modelling; Amplifier Configurations.

4. Amplifier & Cascode Configurations

BJT & MOS integrated amplifiers; Cascoded transconductors and loads.

5. Current Mirrors & References

MOS and bipolar Current Mirroring; Temperature and Sensitivity Analysis; Voltage and Current Referencing.

6. Differential Amplifiers

Qualitative Analysis and Bipolar/MOSFET Differences; Small-Signal and Large-Signal Analysis; Cascode Differential Amplifiers; Common-Mode Rejection; Use of Active Loads.

Assessment Breakdown	%
Continuous Assessment	20.00%
Practical	20.00%
End of Module Formal Examination	60.00%

Continuous Assessment				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Examination	Students will sit a written examination during the module.	2,4,5,6	20.00	n/a

No Project

Practical				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Practical/Skills Evaluation	Students will complete a series of practical assignments, under supervision, using circuit simulation software.	1,2,3,4,5,6	20.00	n/a

End of Module Formal Examination				
Assessment Type	Assessment Description	Outcome addressed	% of total	Assessment Date
Formal Exam	A written examination, at the end of the module, will examine the extent of the student's achievement of the learning outcomes.	1,2,3,4,5,6	60.00	End-of- Semester

SETU Carlow Campus reserves the right to alter the nature and timings of assessment

DSGN C4601: Microelectronic Design 1

Module Workload

Workload: Full Time		
Workload Type	Frequency	Average Weekly Learner Workload
Lecture	Every Week	4.00
Practicals	Every Week	3.00
Independent Learning Time	Every Week	3.00
	Total Hours	10.00

Module Delivered In

Programme Code	Programme	Semester	Delivery
CW_EEBEE_B	Bachelor of Engineering (Honours) in Biomedical Electronics	7	Mandatory
CW_EESYS_B	Bachelor of Engineering (Honours) in Electronic Engineering	7	Mandatory